下载此文档

人教版初中数学专题04 几何图形初步(解析版).docx


初中 八年级 上学期 数学 人教版

1340阅读234下载21页568 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版初中数学专题04 几何图形初步(解析版).docx
文档介绍:
专题04 几何图形初步
知识点1:几何图形
1.立体图形.像长方体、正方体、圆柱、球、圆锥、棱柱、棱锥等几何图形的各部分不都在同一平面内,这样的图形成为立体图形。
2.平面图形.如线段、角、三角形、长方形、圆等几何图形的各部分都在同一平面内,这样的图形成为平面图形。
3.展开图.将立体图形沿某几条棱剪开,可以展开成平面图形.这样的平面图形称为相应立体图形的展开图。几何体展开图规律如下:
(1)沿多面体的棱将多面体剪开成平面图形,若干个平面图形也可以围成一个多面体;
(2)同一个多面体沿不同的棱剪开,得到的平面展开图是不一样的,就是说:同一个立体图形可以有多种不同的展开图。
知识点2:直线、射线、线段
1.经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.
2.如果一个点把线段分成相等的两条线段,那么这个点叫做线段的中点.
3.两点之间线段最短.
4.连接两点间的线段的长度,叫做两点的距离。
知识点3:角的问题
1.角:有公共端点的两条射线组成的图形叫做角。
2.度、分、秒之间的换算关系:
1周角=360° 1平角=180° 1°=60′ 1′=60″
3.角的平分线:从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.
4.余角、补角
名称
概念
性质
互为余角
如果两个角的和等于90°,那么这两个角互为余角.
(1)90°-α是α的余角;
(2)同角或等角的余角相等.
互为补角
如果两个角的和等于180°,那么这两个角互为补角。
(1)180°-α是α的补角;
(2)同角或等角的补角相等.
本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形.通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系.在此基础上,认识一些简单的平面图形——直线、射线、线段和角. 本章书涉及的数学思想:
1.分类讨论思想。在过平面上若干个点画直线时,应注意对这些点分情况讨论;在画图形时,应注意图形的各种可能性。
2.方程思想。在处理有关角的大小,线段大小的计算时,常需要通过列方程来解决。
3.图形变换思想。在研究角的概念时,要充分体会对射线旋转的认识。在处理图形时应注意转化思想的应用,如立体图形与平面图形的互相转化。
4.化归思想。在进行直线、线段、角以及相关图形的计数时,总要划归到公式n(n-1)/2的具体运用上来。
【例题1】(2020南昌模拟)如图是一个正方体纸盒的外表面展开图,则这个正方体是(  )
A. B. C. D.
【答案】C
【解析】本题考查的是几何体的展开图,此类问题从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.
根据几何体的展开图先判断出实心圆点与空心圆点的关系,进而可得出结论.
∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,
∴C符合题意.
【例题2】(2020•武威)若α=70°,则α的补角的度数是(  )
A.130° B.110° C.30° D.20°
【答案】B
【分析】根据补角的定义,两个角的和是180°即可求解.
【解析】α的补角是:180°﹣∠A=180°﹣70°=110°.
【例题3】(2020•乐山)如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF.则∠GEB=(  )
A.10° B.20° C.30° D.40°
【答案】B
【分析】根据平角的定义得到∠CEF=180°﹣∠FEA=180°﹣40°=140°,由角平分线的定义可得∠CEB=12∠CEF=12×140°=70°,由GE⊥EF可得∠GEF=90°,可得∠CEG=180°﹣∠AEF﹣∠GEF=180°﹣40°﹣90°=50°,由∠GEB=∠CEB﹣∠CEG可得结果.
【解析】∵∠FEA=40°,GE⊥EF,
∴∠CEF=180°﹣∠FEA=180°﹣40°=140°,∠CEG=180°﹣∠AEF﹣∠GEF=180°﹣40°﹣90°=50°,
∵射线EB平分∠CEF,
∴∠CEB=12∠CEF=12×140°=70°,
∴∠GEB=∠CEB﹣∠CEG=70°﹣50°=20°
【例题4】(2020•达州)如图,点O在∠ABC的边BC上,以OB为半径作⊙O,∠ABC的平分线BM交⊙O于点D,过点D作DE⊥BA于点E.
(1)尺规作图(不写作法,保留作图痕迹
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档