下载此文档

人教版初中数学专题09 反比例函数问题(解析版).doc


初中 九年级 上学期 数学 人教版

1340阅读234下载56页2.90 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版初中数学专题09 反比例函数问题(解析版).doc
文档介绍:
决胜2021中考数学压轴题全揭秘精品
专题09 反比例函数问题
【考点1】反比例函数的图象与性质
【例1】(2019·湖北中考真题)反比例函数,下列说法不正确的是(  )
A.图象经过点(1,-3) B.图象位于第二、四象限
C.图象关于直线y=x对称 D.y随x的增大而增大
【答案】D
【解析】
【分析】
通过反比例图象上的点的坐标特征,可对A选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项做出判断,得出答案.
【详解】
解:由点的坐标满足反比例函数,故A是正确的;
由,双曲线位于二、四象限,故B也是正确的;
由反比例函数的对称性,可知反比例函数关于对称是正确的,故C也是正确的,
由反比例函数的性质,,在每个象限内,随的增大而增大,不在同一象限,不具有此性质,故D是不正确的,
故选:D.
【点睛】
考查反比例函数的性质,当时,在每个象限内随的增大而增大的性质、反比例函数的图象是轴对称图象,和是它的对称轴,同时也是中心对称图形;熟练掌握反比例函数图象上点的坐标特征和反比例函数图象和性质是解答此题的关键.
【变式1-1】(2020·山东潍坊·中考真题)如图,函数与的图象相交于点两点,则不等式的解集为( )
A. B.或 C. D.或
【答案】D
【分析】
结合图像,求出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.
【详解】
解:∵函数与的图象相交于点两点,
∴不等式的解集为:或,
故选:D.
【点睛】
本题考查了一次函数与反比例函数的交点问题,关键是注意掌握数形结合思想的应用.
【变式1-2】(2020·湖北武汉·中考真题)若点,在反比例函数的图象上,且,则的取值范围是( )
A. B. C. D.或
【答案】B
【分析】
由反比例函数,可知图象经过第二、四象限,在每个象限内,y随x的增大而增大,由此分三种情况①若点A、点B在同在第二或第四象限;②若点A在第二象限且点B在第四象限;③若点A在第四象限且点B在第二象限讨论即可.
【详解】
解:∵反比例函数,
∴图象经过第二、四象限,在每个象限内,y随x的增大而增大,
①若点A、点B同在第二或第四象限,
∵,
∴a-1>a+1,
此不等式无解;
②若点A在第二象限且点B在第四象限,
∵,
∴,
解得:;
③由y1>y2,可知点A在第四象限且点B在第二象限这种情况不可能.
综上,的取值范围是.
故选:B.
【点睛】
本题考查反比例函数的图象和性质,熟练掌握反比例函数的图象和性质是解题的关键,注意要分情况讨论,不要遗漏.
【考点2】反比例函数k的几何意义
【例2】(2020·内蒙古赤峰·中考真题)如图,点B在反比例函数()的图象上,点C在反比例函数()的图象上,且轴,,垂足为点C,交y轴于点A,则的面积为 ( )
A.3 B.4 C.5 D.6
【答案】B
【分析】
作BD⊥BC交y轴于D,可证四边形ACBD是矩形,根据反比例函数k的几何意义求出矩形ACBD的面积,进而由矩形的性质可求的面积.
【详解】
作BD⊥BC交y轴于D,
∵轴,,
∴四边形ACBD是矩形,
∴S矩形ACBD=6+2=8,
∴的面积为4.
故选B.
【点睛】
本题考查了反比例函数比例系数的几何意义,一般的,从反比例函数(k为常数,k≠0)图象上任一点
P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数,以点P及点P的一个垂足和坐标原点为顶点的三角形的面积等于 .也考查了矩形的性质.
【变式2-1】(2020·辽宁营口·中考真题)如图,在平面直角坐标系中,△OAB的边OA在x轴正半轴上,其中∠OAB=90°,AO=AB,点C为斜边OB的中点,反比例函数y=(k>0,x>0)的图象过点C且交线段AB于点D,连接CD,OD,若S△OCD=,则k的值为(  )
A.3 B. C.2 D.1
【答案】C
【分析】
根据题意设B(m,m),则A(m,0),C(,),D(m,m),然后根据S△COD=S△COE+S梯形ADCE﹣S△AOD=S梯形ADCE,得到()•(m﹣m)=,即可求得k==2.
【详解】
解:根据题意设B(m,m),则A(m,0),
∵点C为斜边OB的中点,
∴C(,),
∵反比例函数y=(k>0,x>0)的图象过点C,
∴k==,
∵∠OAB=90°,
∴D的横坐标为m,
∵反比例函数y=(k>0,x>0)的图象过点D,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档