下载此文档

人教版数学类型一 二次函数与线段问题(解析版).doc


初中 九年级 上学期 数学 人教版

1340阅读234下载7页598 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版数学类型一 二次函数与线段问题(解析版).doc
文档介绍:
类型一 二次函数与线段问题

例1、 如图1-1,抛物线y=x2-2x-3与x轴交于A、B两点,与y轴交于点C,点P是抛物线对称轴上的一个动点,如果△PAC的周长最小,求点P的坐标.
图1-1
【解析】如图1-2,把抛物线的对称轴当作河流,点A与点B对称,连结BC,那么在△PBC中,PB+PC总是大于BC的.如图1-3,当点P落在BC上时,PB+PC最小,因此PA+PC最小,△PAC的周长也最小.
由y=x2-2x-3,可知OB=OC=3,OD=1.所以DB=DP=2,因此P(1,-2).
图1-2 图1-3
例2、如图,抛物线与y轴交于点A,B是OA的中点.一个动点G从点B出发,先经过x轴上的点M,再经过抛物线对称轴上的点N,然后返回到点A.如果动点G走过的路程最短,请找出点M、N的位置,并求最短路程.
图2-1
【解析】如图2-2,按照“台球两次碰壁”的模型,作点A关于抛物线的对称轴对称的点A′,作点B关于x轴对称的点B′,连结A′B′与x轴交于点M,与抛物线的对称轴交于点N.
在Rt△AA′B′中,AA′=8,AB′=6,所以A′B′=10,即点G走过的最短路程为10.根据相似比可以计算得到
OM=,MH=,NH=1.所以M(, 0),N(4, 1).
图2-2
例3、如图3-1,抛物线与y轴交于点A,顶点为B.点P是x轴上的一个动点,求线段PA与PB中较长的线段减去较短的线段的差的最小值与最大值,并求出相应的点P的坐标.
图3-1
【解析】题目读起来像绕口令,其实就是求|PA-PB|的最小值与最大值.
由抛物线的解析式可以得到A(0, 2),B(3, 6).设P(x, 0).
绝对值|PA-PB|的最小值当然是0了,此时PA=PB,点P在AB的垂直平分线上(如图3-2).解方程x2+22=(x-3)2+62,得.此时P.
在△PAB中,根据两边之差小于第三边,那么|PA-PB|总是小于AB了.如图3-3,当点P在BA的延长线上时,|PA-PB|取得最大值,最大值AB=5.此时P.
图3-2 图3-3
例4、如图4-1,菱形ABCD中,AB=2,∠A=120°,点P、Q、K分别为线段BC、CD、BD上的任意一点,求PK+QK的最小值.
图4-1
【解析】如图4-2,点Q关于直线BD的对称点为Q′,在△KPQ′中,PK+QK总是大于PQ′的.如图4-3,当点K落在PQ′上时,PK+QK的最小值为PQ′.如图4-4,PQ′的最小值为Q′H,Q′H就是菱形ABCD的高,Q′H=.
这道题目应用了两个典型的最值结论:两点之间,线段最短;垂线段最短.
图4-2 图4-3 图4-4
例5、如图5-1,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙B和⊙A上的动点,求PE+PF的最小值.
图5-1
【解析】E、F、P三个点都不确定,怎么办?BE=1,AF=2是确定的,那么我们可以求PB+PA-3
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档