下载此文档

人教版初中数学专题27 涉及圆的证明与计算问题(解析版).docx


初中 九年级 上学期 数学 人教版

1340阅读234下载48页947 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版初中数学专题27 涉及圆的证明与计算问题(解析版).docx
文档介绍:
专题27 涉及圆的证明与计算问题
圆的证明与计算是中考必考点,也是中考的难点之一。纵观全国各地中考数学试卷,能够看出,圆的证明与计算这个专题内容有三种题型:选择题、填空题和解答题。
一、与圆有关的概念
1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。圆的半径或直径决定圆的大小,圆心决定圆的位置。
2.圆心角:顶点在圆心上的角叫做圆心角。圆心角的度数等于它所对弧的度数。
3.圆周角:顶点在圆周上,并且两边分别与圆相交的角叫做圆周角。
4. 外接圆和外心:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。外接圆的圆心,叫做三角形的外心。外心是三角形三条边垂直平分线的交点。外心到三角形三个顶点的距离相等。
5.若四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆。
6.和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。内心是三角形三个角的角平分线的交点。内心到三角形三边的距离相等。
二、与圆有关的规律
1.圆的性质:
(1)圆具有旋转不变性;
(2)圆具有轴对称性;
(3)圆具有中心对称性。
2.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
3.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
4.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。
5.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
6.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
7.圆内接四边形的特征
①圆内接四边形的对角互补;
②圆内接四边形任意一个外角等于它的内对角。
三、点和圆、线和圆、圆和圆的位置关系
1. 点和圆的位置关系
① 点在圆内点到圆心的距离小于半径
② 点在圆上点到圆心的距离等于半径
③ 点在圆外点到圆心的距离大于半径
2.直线与圆有3种位置关系
如果⊙O的半径为r,圆心O到直线的距离为d,那么
① 直线和⊙O相交;
② 直线和⊙O相切;
③ 直线和⊙O相离。
3.圆与圆的位置关系
设圆的半径为,圆的半径为,两个圆的圆心距,则:
两圆外离 ;两圆外切 ;
两圆相交 ;两圆内切 ;
两圆内含
四、切线的规律
1.切线的性质
(1)经过切点垂直于这条半径的直线是圆的切线。
(2)经过切点垂直于切线的直线必经过圆心。
(3)圆的切线垂直于经过切点的半径。
2.切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。
3.切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,并且圆心和这一点的连线平分两条切
线的夹角。
四、求解圆的周长和面积的公式
设圆的周长为r,则:
求圆的直径公式d=2r
2.求圆的周长公式 C=2πr
3.求圆的面积公式S=πr2
五、解题要领
1.判定切线的方法
(1)若切点明确,则“连半径,证垂直”。常见手法有全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直;
(2)若切点不明确,则“作垂直,证半径”。常见手法有角平分线定理;等腰三角形三线合一,隐藏角平分线;总而言之,要完成两个层次的证明:
①直线所垂直的是圆的半径(过圆上一点);
②直线与半径的关系是互相垂直。在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.
2.与圆有关的计算
计算圆中的线段长或线段比,通常与勾股定理、垂径定理与三角形的全等、相似等知识的结合,形式复杂,无规律性。分析时要重点注意观察已知线段间的关系,选择定理进行线段或者角度的转化。特别是要借助圆的相关定理进行弧、弦、角之间的相互转化,找出所求线段与已知线段的关系,从而化未知为已知,解决问题。其中重要而常见的数学思想方法有:
(1)构造思想:①构建矩形转化线段;②构建“射影定理”基本图研究线段(已知任意两条线段可求其它所有线段长);③构造垂径定理模型:弦长一半、弦心距、半径;④构造勾股定理模型;⑤构造三角函数.
(2)方程思想:设出未知数表示关键线段,通过线段之间的关系,特别是发现其中的相等关系建立方程,解决问题。
(3)建模思想:借助基本图形的结论发现问题中的线段关系,把问题分解为若干基本图形的问题,通过
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档