下载此文档

专题31 特殊平行四边形【专题巩固】-【人教版】备战2022年中考数学考点总复习(全国通用)(解析版).docx


初中 七年级 上学期 数学 人教版

1340阅读234下载21页569 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
专题31 特殊平行四边形【专题巩固】-【人教版】备战2022年中考数学考点总复习(全国通用)(解析版).docx
文档介绍:
学科网(北京)股份有限公司
专题31 特殊平行四边形
考点1:菱形的性质与判定
1.(2021·安徽中考真题)如图,在菱形ABCD中,,,过菱形ABCD的对称中心O分别作边AB,BC的垂线,交各边于点E,F,G,H,则四边形EFGH的周长为( )
A. B. C. D.
【答案】A
【分析】
依次求出OE=OF=OG=OH,利用勾股定理得出EF和OE的长,即可求出该四边形的周长.
【详解】
∵HF⊥BC,EG⊥AB,
∴∠BEO=∠BFO=90°,
∵∠A=120°,
∴∠B=60°,
∴∠EOF=120°,∠EOH=60°,
学科网(北京)股份有限公司
由菱形的对边平行,得HF⊥AD,EG⊥CD,
因为O点是菱形ABCD的对称中心,
∴O点到各边的距离相等,即OE=OF=OG=OH,
∴∠OEF=∠OFE=30°,∠OEH=∠OHE=60°,
∴∠HEF=∠EFG=∠FGH=∠EHG=90°,
所以四边形EFGH是矩形;
设OE=OF=OG=OH=x,
∴EG=HF=2x,,
如图,连接AC,则AC经过点O,
可得三角形ABC是等边三角形,
∴∠BAC=60°,AC=AB=2,
∴OA=1,∠AOE=30°,
∴AE=,
∴x=OE=
∴四边形EFGH的周长为EF+FG+GH+HE=,
故选A.
学科网(北京)股份有限公司
2.(2021·陕西中考真题)如图,在菱形中,,连接、,则的值为( )
A. B. C. D.
【答案】D
【分析】
设AC与BD的交点为O,由题意易得,,进而可得△ABC是等边三角形,,然后问题可求解.
【详解】
解:设AC与BD的交点为O,如图所示:
学科网(北京)股份有限公司
∵四边形是菱形,
∴,,
∵,
∴△ABC是等边三角形,
∴,
∴,
∴,
∴,
∴;
故选D.
3.(2021·四川凉山彝族自治州·中考真题)菱形中,对角线,则菱形的高等于___________.
【答案】
【分析】
学科网(北京)股份有限公司
过A作AE⊥BC,垂足为E,根据菱形的性质求出菱形边长,再利用菱形的面积公式得到方程,解之可得AE.
【详解】
解:如图,过A作AE⊥BC,垂足为E,即AE为菱形ABCD的高,
∵菱形ABCD中,AC=10,BD=24,
∴OB=BD=12,OA=AC=5,
在Rt△ABO中,AB=BC==13,
∵S菱形ABCD=,
∴,
解得:AE=,
故答案为:.
4.(2021·江苏镇江·中考真题)如图,四边形ABCD是平行四边形,延长DA,BC,使得AE=CF,连接BE,DF.
(1)求证:;
学科网(北京)股份有限公司
(2)连接BD,∠1=30°,∠2=20°,当∠ABE=  °时,四边形BFDE是菱形.
【答案】(1)见解析;(2)当∠ABE=10°时,四边形BFDE是菱形
【分析】
(1)根据平行四边形的性子和“SAS”可证△ABE≌△CDF;
(2)先证明四边形BFDE是平行四边形,再通过证明BE=DE,可得结论.
【解析】
解:(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,∠BAD=∠BCD,
∴∠1=∠DCF,
在△ABE和△CDF中,

∴△ABE≌△CDF(SAS);
(2)当∠ABE=10°时,四边形BFDE是菱形,
理由如下:∵△ABE≌△CDF,
∴BE=DF,AE=CF,
∴BF=DE,
学科网(北京)股份有限公司
∴四边形BFDE是平行四边形,
∵∠1=30°,∠2=20°,
∴∠ABD=∠1-∠2=10°,
∴∠DBE=20°,
∴∠DBE=∠EDB=20°,
∴BE=DE,
∴平行四边形BFDE是菱形,
故答案为10.
5.(2021·四川遂宁市·中考真题)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,过点O的直线EF与BA、DC的延长线分别交于点E、F.
(1)求证:AE=CF;
(2)请再添加一个条件,使四边形BFDE是菱形,并说明理由.
【答案】(1)见解析;(2)EF⊥BD或EB=ED,见解析
【分析】
(1)根据平行四边形的性质和全等三角形的证明方法证明,则可得到AE=CF;
学科网(北京)股份有限公司
(2)连接BF,DE,由,得到OE= OF,又AO=CO,所以四边形AECF是平行四边形,则根据EF⊥BD可得四边形BFDE是菱形.
【详解】
证明:(1)∵四边形是平行四边形
∴OA=O
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档