下载此文档

人教版初中数学专题14 函数与利润问题【考点精讲】(解析版).docx


初中 八年级 上学期 数学 人教版

1340阅读234下载21页391 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版初中数学专题14 函数与利润问题【考点精讲】(解析版).docx
文档介绍:
学科网(北京)股份有限公司
专题14 函数与利润问题

知识导航
题型精讲
题型一:图表类
【例1】某市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售
公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数
图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)
之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润
为w万元.(毛利润=销售额﹣生产费用)
(1)请直接写出y与x以及z与x之间的函数关系式;
(2)求w与x之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?
(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?
【分析】(1)利用待定系数法可求出y与x以及z与x之间的函数关系式;
(2)根据(1)的表达式及毛利润=销售额﹣生产费用,可得出w与x之间的函数关系式,再利用配方法求函数最值即可;
(3)首先求出x的取值范围,再利用二次函数增减性得出答案即可.
【详解】解:(1)图①可得函数经过点(100,1000),
学科网(北京)股份有限公司
设抛物线的解析式为y=ax2(a≠0),
将点(100,1000)代入得:1000=10000a,
解得:a=110,
故y与x之间的关系式为y=110x2.
图②可得:函数经过点(0,30)、(100,20),
设z=kx+b,则100k+b=20b=30,
解得:k=−110b=30,
故z与x之间的关系式为z=−110x+30;
(2)W=zx﹣y=−110x2+30x−110x2
=−15x2+30x
=−15(x2﹣150x)
=−15(x﹣75)2+1125,
∵−15<0,
∴当x=75时,W有最大值1125,
∴年产量为75万件时毛利润最大,最大毛利润为1125万元;
(3)令y=360,得110x2=360,
解得:x=±60(负值舍去),
由图象可知,当0<y≤360时,0<x≤60,
由W=−15(x﹣75)2+1125的性质可知,
当0<x≤60时,W随x的增大而增大,
故当x=60时,W有最大值1080,
答:今年最多可获得毛利润1080万元.
【例2】某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足
一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:
学科网(北京)股份有限公司
销售单价x(元)
85
95
105
115
日销售量y(个)
175
125
75
m
日销售利润w(元)
875
1875
1875
875
(注:日销售利润=日销售量×(销售单价﹣成本单价))
(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;
(2)根据以上信息,填空:该产品的成本单价是   元,当销售单价x=   元时,日销售利润w最大,最大值是   元;
(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?
【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;
(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;
(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.
【详解】解;(1)设y关于x的函数解析式为y=kx+b,
85k+b=17595k+b=125,得k=−5b=600,
即y关于x的函数解析式是y=﹣5x+600,
当x=115时,y=﹣5×115+600=25,
即m的值是25;
(2)设成本为a元/个,
当x=85时,875=175×(85﹣a),得a=80,
w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,
∴当x=100时,w取得最大值,此时w=2000,
故答案为:80,100,2000;
(3)设科技创新后成本为b元,当x=90时,
(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,
答:该产品的成本单价应不超过65元.
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档