下载此文档

人教版专题19(江西省南昌市专用)(解析版)-2021年31个地区中考数学精品模拟试卷.docx


初中 八年级 上学期 数学 人教版

1340阅读234下载19页582 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版专题19(江西省南昌市专用)(解析版)-2021年31个地区中考数学精品模拟试卷.docx
文档介绍:
2021江西南昌市中考数学精品模拟试卷
(本卷共有6个大题,24个小题,全卷满分120分,考试时间120分钟)

一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)
1. ﹣12021=(  )
A.1 B.﹣1 C.2020 D.﹣2020
【答案】B
【解析】1的任何次方都等于1
﹣12021=-1
2.据新华社2020年5月17日消息,全国各地和军队约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学记数法表示为( )
A.4.26×104. B.4.26×105. C.4.26×106. D.4.26×107.
【答案】A
【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正整数;当原数的绝对值小于1时,n是负整数.
将42600用科学记数法表示为4.26×104
3.下列计算正确的是(  )
A.a+2a=3a B.(a+b)2=a2+ab+b2
C.(﹣2a)2=﹣4a2 D.a•2a2=2a2
【答案】A
【解析】分别根据合并同类项法则、完全平方公式、单项式的乘方及单项式乘单项式法则逐一计算可得.
A.a+2a=(1+2)a=3a,此选项计算正确;
B.(a+b)2=a2+2ab+b2,此选项计算错误;
C.(﹣2a)2=4a2,此选项计算错误;
D.a•2a2=2a3,此选项计算错误。
4. 由几个相同的小正方形搭成的一个几何体如图所示,这个几何体的主视图是(  )
  A. B. C. D.
【答案】A
【解析】根据从正面看得到的视图是主视图,可得答案.
从正面看第一层是三个小正方形,第二层是靠右边两个小正方形。
5. 如图,在四边形ABCD中,对角线AC和BD相交于点O,下列条件不能判断四边形ABCD是平行四边形的是(  )
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AB∥DC,AD=BC D.OA=OC,OB=OD
【答案】C
【分析】根据平行四边形的定义,可以得到选项A中的条件可以判断四边形ABCD是平行四边形;根据两组对边分别相等的四边形是平行四边形,可以得到选项B中的条件可以判断四边形ABCD是平行四边形;根据对角线互相平分的四边形是平行四边形,可以得到选项D中的条件可以判断四边形ABCD是平行四边形;选项C中的条件,无法判断四边形ABCD是平行四边形.
【解析】∵AB∥DC,AD∥BC,
∴四边形ABCD是平行四边形,故选项A中条件可以判定四边形ABCD是平行四边形;
∵AB=DC,AD=BC,
∴四边形ABCD是平行四边形,故选项B中条件可以判定四边形ABCD是平行四边形;
∵AB∥DC,AD=BC,则无法判断四边形ABCD是平行四边形,故选项C中的条件,不能判断四边形ABCD是平行四边形;
∵OA=OC,OB=OD,
∴四边形ABCD是平行四边形,故选项D中条件可以判定四边形ABCD是平行四边形;
6. 已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2,0),其对称轴是直线x=12.有下列结论:
①abc>0;
②关于x的方程ax2+bx+c=a有两个不等的实数根;
③a<-12.
其中,正确结论的个数是(  )
A.0 B.1 C.2 D.3
【答案】C
【分析】由题意得到抛物线的开口向下,对称轴-b2a=12,b=﹣a,判断a,b与0的关系,得到abc<0,即可判断①;
根据题意得到抛物线开口向下,顶点在x轴上方,即可判断②;
根据抛物线y=ax2+bx+c经过点(2,0)以及b=﹣a,得到4a﹣2a+c=0,即可判断③.
【解析】∵抛物线的对称轴为直线x=12,
而点(2,0)关于直线x=12的对称点的坐标为(﹣1,0),
∵c>1,
∵抛物线开口向下,
∴a<0,
∵抛物线对称轴为直线x=12,
∴-b2a=12,
∴b=﹣a>0,
∴abc<0,故①错误;
∵抛物线开口向下,与x轴有两个交点,
∴顶点在x轴的上方,
∵a<0,
∴抛物线与直线y=a有两个交点,
∴关于x的方程ax2+bx+c=a有两个不等的实数根;故②正确;
∵抛物线y=ax2+bx+c经过点(2,0),
∴4a+2b+c=0,
∵b=﹣a,
∴4a﹣2a+c=0,即2a+c=0,
∴﹣2a=c
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档