下载此文档

专题13 平行四边形与特殊平行四边形-三年(2020-2022)中考数学真题分项汇编(人教版)(解析版).docx


初中 八年级 上学期 数学 人教版

1340阅读234下载111页4.01 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
专题13 平行四边形与特殊平行四边形-三年(2020-2022)中考数学真题分项汇编(人教版)(解析版).docx
文档介绍:
学科网(北京)股份有限公司
专题13 平行四边形与特殊的平行四边形
一、单选题
1.(2022·贵州贵阳)如图,将菱形纸片沿着线段剪成两个全等的图形,则的度数是(       )
A.40° B.60° C.80° D.100°
【答案】C
【解析】
【分析】
根据两直线平行,内错角相等可得出答案.
【详解】
解:∵纸片是菱形
∴对边平行且相等
∴(两直线平行,内错角相等)
故选:C.
【点睛】
本题考查了菱形的性质,解题的关键是要知道两直线平行,内错角相等.
2.(2022·广东)如图,在中,一定正确的是(       )
A. B. C. D.
【答案】C
【解析】
【分析】
根据平行四边形的性质:平行四边形的对边相等,然后对各选项进行判断即可.
学科网(北京)股份有限公司
【详解】
解:∵四边形ABCD是平行四边形
∴AB=CD,AD=BC
故选C.
【点睛】
本题考查了平行四边形的性质.解题的关键在于熟练掌握平行四边形的性质.
3.(2021·广西柳州)如图,在菱形中,对角线,则的面积为(       )
A.9 B.10 C.11 D.12
【答案】B
【解析】
【分析】
菱形的对角线互相垂直平分,故的面积为对角线的一半的乘积的.
【详解】
是菱形
的面积
学科网(北京)股份有限公司
故选B.
【点睛】
本题考查了菱形的性质及三角形面积,理解是直角三角形是解题的关键.
4.(2020·湖北)已知中,下列条件:①;②;③;④平分,其中能说明是矩形的是(       )
A.① B.② C.③ D.④
【答案】B
【解析】
【分析】
根据矩形的判定进行分析即可.
【详解】
A. ,邻边相等的平行四边形是菱形,故A错误;
B. ,对角线相等的平行四边形是矩形,故B正确;
C. ,对角线互相垂直的平行四边形是菱形,故C错误;
D. 平分,对角线平分其每一组对角的平行四边形是菱形,故D错误.
故选:B.
【点睛】
本题考查了矩形的判定,熟知矩形从边,角,对角线三个方向的判定是解题的关键.
5.(2020·贵州黔南)如图,将矩形纸条折叠,折痕为,折叠后点C,D分别落在点,处,与交于点G.已知,则的度数是(       )
A.30° B.45° C.74° D.75°
【答案】D
【解析】
【分析】
学科网(北京)股份有限公司
依据平行线的性质,即可得到的度数,再根据折叠的性质,即可得出的度数.
【详解】
解:∵矩形纸条中,,
∴,
∴,
由折叠可得,,
故选:D.
【点睛】
本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
6.(2020·湖南益阳)如图,的对角线,交于点,若,,则的长可能是( )
A. B. C. D.
【答案】D
【解析】
【分析】
先根据平行四边形的对角线互相平分得到OA、OB的长度,再根据三角形三边关系得到AB的取值范围,即可求解.
【详解】
解:∵四边形ABCD是平行四边形,
∴OA=AC=3,BO=BD=4,
在△AOB中,
4-3<AB<4+3
∴1<AB<7,
结合选项可得,AB的长度可能是6,
学科网(北京)股份有限公司
故选D.
【点睛】
本题考查平行四边形的性质和三角形的三边关系,熟练掌握平行四边形的对角线互相平分是解题的关键.
7.(2020·广西玉林)点D,E分别是三角形ABC的边AB,AC的中点,如图,
求证:且
证明:延长DE到F,使EF=DE,连接FC,DC,AF,
又AE=EC,则四边形ADCF是平行四边形,
接着以下是排序错误的证明过程;
①;
②;
③四边形DBCF是平行四边形;
④且
则正确的证明排序应是:(   )
A.②③①④ B.②①③④ C.①③④② D.①③②④
【答案】A
【解析】
【分析】
根据已经证明出四边形ADCF是平行四边形,则利用平行四边形的性质可得,可得,证出四边形DBCF是平行四边形,得出,且,即可得出结论且,对照题中步骤,即可得出答案.
【详解】
学科网(北京)股份有限公司
解:四边形ADCF是平行四边形,


四边形DBCF是平行四边形,
,且;
,
;
且;
对照题中四个步骤,可得②③①④正确;
故答案选:A.
【点睛】
本题考查平行四边形性质与判定综合应用;当题中出现中点的时候,可以利用中线倍长的辅助线做法,证明平行四边形后要
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档