2020年浙江省初中毕业生学业水平考试(嘉兴卷) 数学试题卷 一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分) 1.2020年3月9日,中国第54颗北斗导航卫星成功发射,其轨道高度约为36000000m.数36000000用科学记数法表示为( ) A. 0.36×108 B. 36×107 C. 3.6×108 D. 3.6×107 【答案】D 【解析】 【分析】 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同. 【详解】解:36 000 000=3.6×107, 故答案选:D. 【点睛】本题主要考查了科学记数法的表示方法,关键是确定a的值和n的值. 2.如图,是由四个相同的小正方体组成的立体图形,它的左视图是( ) A. B. C. D. 【答案】A 【解析】 【详解】从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形. 故选A. 3.已知样本数据2,3,5,3,7,下列说法不正确的是( ) A. 平均数是4 B. 众数是3 C. 中位数是5 D. 方差是3.2 【答案】C 【解析】 【分析】 根据众数、中位数、平均数、方差的定义和计算公式分别进行分析即可. 【详解】解:样本数据2,3,5,3,7中平均数是4,中位数是3,众数是3,方差是S2=[(2﹣4)2+(3﹣4)2+(5﹣4)2+(3﹣4)2+(7﹣4)2]=3.2. 故选:C. 【点睛】本题考查了对中位数、平均数、众数、方差的知识点应用. 4.一次函数y=2x﹣1的图象大致是( ) A. B. C. D. 【答案】B 【解析】 【分析】 根据一次函数的性质,判断出k和b的符号即可解答. 【详解】由题意知,k=2>0,b=﹣1<0时,函数图象经过一、三、四象限. 故选B. 【点睛】本题考查了一次函数y=kx+b图象所过象限与k,b的关系,当k>0,b<0时,函数图象经过一、三、四象限. 5.如图,在直角坐标系中,△OAB的顶点为O(0,0),A(4,3),B(3,0).以点O为位似中心,在第三象限内作与△OAB的位似比为的位似图形△OCD,则点C坐标( ) A. (﹣1,﹣1) B. (﹣,﹣1) C. (﹣1,﹣) D. (﹣2,﹣1) 【答案】B 【解析】 【分析】 根据关于以原点为位似中心的对应点的坐标的关系,把A点的横纵坐标都乘以即可. 【详解】解:∵以点O为位似中心,位似比为, 而A (4,3), ∴A点的对应点C的坐标为(,﹣1). 故选:B. 【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k. 6.不等式3(1﹣x)>2﹣4x的解在数轴上表示正确的是( ) A. B. C. D. 【答案】A 【解析】 【分析】 根据解一元一次不等式基本步骤:去括号、移项、合并同类项可得不等式的解集,继而可得答案. 【详解】解:去括号,得:3﹣3x>2﹣4x, 移项,得:﹣3x+4x>2﹣3, 合并,得:x>﹣1, 故选:A. 【点睛】本题考查了解一元一次不等式及用数轴表示不等式的解集,正确解不等式是解题关键,注意“>”向右,“<”向左,带等号用实心,不带等号用空心. 7.如图,正三角形ABC的边长为3,将△ABC绕它的外心O逆时针旋转60°得到△A'B'C',则它们重叠部分的面积是( ) A. 2 B. C. D. 【答案】C 【解析】 【分析】 根据重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形,据此即可求解. 【详解】解:作AM⊥BC于M,如图: 重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形. ∵△ABC是等边三角形,AM⊥BC, ∴AB=BC=3,BM=CM=BC=,∠BAM=30°, ∴AM=BM=, ∴△ABC的面积=BC×AM=×3×=, ∴重叠部分的面积=△ABC的面积=; 故选:C. 【点睛】本题考查了三角形的外心、等边三角形的性质以及旋转的性质,理解连接O和正六边形的各个顶点,所得的三角形都为全等的等边三角形是关键. 8.用加减消元法解二元一次方程组时,下列方法中无法消元的是( ) A. ①