下载此文档

人教版初中数学考前必刷02(解析版).docx


初中 九年级 上学期 数学 人教版

1340阅读234下载11页152 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版初中数学考前必刷02(解析版).docx
文档介绍:
考前必刷02
选择题:
1、已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为(  )
A.﹣2 B.﹣4 C.2 D.4
【解答】解:抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,
可知函数的对称轴x=1,
∴=1,
∴b=2;
∴y=﹣x2+2x+4,
将点(﹣2,n)代入函数解析式,可得n=4;
故选:D.
2、已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,
下列说法正确的是(  )
A.有最大值﹣1,有最小值﹣2 B.有最大值0,有最小值﹣1
C.有最大值7,有最小值﹣1 D.有最大值7,有最小值﹣2
【解答】解:∵y=x2﹣4x+2=(x﹣2)2﹣2,
∴在﹣1≤x≤3的取值范围内,当x=2时,有最小值﹣2,
当x=﹣1时,有最大值为y=9﹣2=7.
故选:D.
【考点】二次函数的性质
3、二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c>0;③(a+c)2﹣b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为(  )
A.1个 B.2个 C.3个 D.4个[来源:学#科#网Z#X#X#K]

【解答】解:①∵抛物线开口向上,∴a>0,
∵抛物线的对称轴在y轴右侧,∴b<0
∵抛物线与y轴交于负半轴,
∴c>0,
∴abc<0,①正确;
②当x=﹣1时,y>0,∴a﹣b+c>0,
∵,∴b=﹣2a,
把b=﹣2a代入a﹣b+c>0中得3a+c>0,所以②正确;
③当x=1时,y<0,∴a+b+c<0,
∴a+c<﹣b,
∵a>0,c>0,﹣b>0,
∴(a+c)2<(﹣b)2,即(a+c)2﹣b2<0,所以③正确;
④∵抛物线的对称轴为直线x=1,
∴x=1时,函数的最小值为a+b+c,
∴a+b+c≤am2+mb+c,
即a+b≤m(am+b),所以④正确.
故选:D.
4、如图,在平面直角坐标系xOy中,菱形ABCD的顶点A与原点O重合,顶点B落在x轴的正半轴上,对角线AC、BD交于点M,点D、M恰好都在反比例函数y=(x>0)的图象上,则的值为(  )
A. B. C.2 D.
【解答】解:设D(m,),B(t,0),
∵M点为菱形对角线的交点,
∴BD⊥AC,AM=CM,BM=DM,
∴M(,),
把M(,)代入y=得•=k,
∴t=3m,
∵四边形ABCD为菱形,
∴OD=AB=t,
∴m2+()2=(3m)2,解得k=2m2,
∴M(2m,m),
在Rt△ABM中,tan∠MAB===,
∴=.
故选:A.
二、填空题:
5、如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B
(3,q)两点,则不等式ax2+mx+c>n的解集是   .[来源:学.科.网]
【解答】解∵抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,
∴﹣m+n=p,3m+n=q,
∴抛物线y=ax2+c与直线y=﹣mx+n交于P(1,p),Q(﹣3,q)两点,
观察函数图象可知:当x<﹣3或x>1时,直线y=﹣mx+n在抛物线y=ax2+bx+c的下方,
∴不等式ax2+mx+c>n的解集为x<﹣3或x>1.
故答案为:x<﹣3或x>1.
6、如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为 
【解答】解:∵四边形ABCD为正方形,
∴∠BAE=∠D=90°,AB=AD,
在△ABE和△DAF中,
∵,
∴△ABE≌△DAF(SAS),
∴∠ABE=∠DAF,
∵∠ABE+∠BEA=90°,
∴∠DAF+∠BEA=90°,
∴∠AGE=∠BGF=90°,
∵点H为BF的中点,
∴GH=BF,
∵BC=5、CF=CD﹣DF=5﹣2=3,
∴BF==,
∴GH=BF=,
故答案为:.
7、如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则BC的长为(  )
【解答】解:连接BD,如图,
∵AB为直径,
∴∠ADB=∠ACB=90°,
∵AD=CD,
∴∠DAC=∠DCA,
而∠
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档