下载此文档

人教版初中数学专题20 三角形存在性问题【考点精讲】(解析版).docx


初中 九年级 上学期 数学 人教版

1340阅读234下载38页1.10 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版初中数学专题20 三角形存在性问题【考点精讲】(解析版).docx
文档介绍:
学科网(北京)股份有限公司
专题20 三角形存在性问题

知识导航
方法技巧
1.判定△ABD的形状,并说明理由。
运用勾股定理或两点间的距离公式,求出该三角形各边的长,再根据勾股定理的逆定理判定三角形的形状。
2.在对称轴x=1上是否存在点P,使△PBC是等腰三角形?若存在,求出点P的坐标:若不存在,请说明理由.
设出动点P的坐标为(1,t)后,分三种情况,若P为顶点,则PB=PC;若B为顶点,则BP=BC;若C为顶点,则CP=CB。分别用两点间的距离公式求出或表示各线段的长度,列方程求解即可。
3.若平行于x轴的动直线l与直线BD交于点F,与抛物线交于点P,若△ODF为等腰三角形,求出点P的坐标.
用勾股定理求平面直角坐标系内的两点间的距离,再分类讨论等腰三角形各边的情况,进而求出点P的坐标。
4.△ABD与△BOD是否相似?说明理由.
学科网(北京)股份有限公司
用两点间的距离公式分别表示两个三角形的各边之长,再用相似的判定方法,注意相似中没有指明对应边,所以要分类讨论。
题型精讲
题型一:等腰三角形存在性问题
【例1】(2021·四川南充市)如图,已知抛物线与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为.
(1)求抛物线的解析式;
(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ.当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由.
(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且.在y轴上是否存在点F,使得为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.
【答案】(1);(2)四边形OCPQ是平行四边形,理由见详解;(3)(0,)或(0,1)或(0,-1)
【分析】
学科网(北京)股份有限公司
(1)设抛物线,根据待定系数法,即可求解;
(2)先求出直线BC的解析式为:y=-x+4,设P(x,-x+4),则Q(x,),(0≤x≤4),得到PQ =,从而求出线段PQ长度最大值,进而即可得到结论;
(3)过点Q作QM⊥y轴,过点Q作QN∥y轴,过点E作EN∥x轴,交于点N,推出,从而得,进而求出E(5,4),设F(0,y),分三种情况讨论,即可求解.
【详解】
解:(1)∵抛物线与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线,
∴B(4,0),C(0,4),
设抛物线,把C(0,4)代入得:,解得:a=1,
∴抛物线的解析式为:;
(2)∵B(4,0),C(0,4),
∴直线BC的解析式为:y=-x+4,
设P(x,-x+4),则Q(x,),(0≤x≤4),
∴PQ=-x+4-()==,
∴当x=2时,线段PQ长度最大=4,
∴此时,PQ=CO,
又∵PQ∥CO,
∴四边形OCPQ是平行四边形;
(3)过点Q作QM⊥y轴,过点Q作QN∥y轴,过点E作EN∥x轴,交于点N,
由(2)得:Q(2,-2),
∵D是OC的中点,
∴D(0,2),
∵QN∥y轴,
∴,
又∵,
学科网(北京)股份有限公司
∴,
∴,
∴,即:,
设E(x,),则,解得:,(舍去),
∴E(5,4),
设F(0,y),则,
,,
①当BF=EF时,,解得:,
②当BF=BE时,,解得:或,
③当EF=BE时,,无解,
综上所述:点F的坐标为:(0,)或(0,1)或(0,-1).

学科网(北京)股份有限公司
题型二:直角三角形存在性问题
【例2】(2021·四川广安市)如图,在平面直角坐标系中,抛物线的图象与坐标轴相交于、、三点,其中点坐标为,点坐标为,连接、.动点从点出发,在线段上以每秒个单位长度向点做匀速运动;同时,动点从点出发,在线段上以每秒1个单位长度向点做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接,设运动时间为秒.
(1)求、的值;
(2)在、运动的过程中,当为何值时,四边形的面积最小,最小值为多少?
(3)在线段上方的抛物线上是否存在点,使是以点为直角顶点的等腰直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.
【答案】(1)b=2,c=3;(2)t=2,最小值为4;(3)(,)
【分析】
(1)利用待定系数法求解即可;
(2)过点P作PE⊥x轴,垂足为E,利用S四边形BCPQ=S△ABC-S△APQ表示出四边形BCPQ的面积,求出t的范围,利用二次函数的性质求出最值即可;
(3)画出图形,过点P作x轴的垂线,交x轴于E,过M作y轴的垂线,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档