下载此文档

人教版专题3 抛物线上的特殊平行四边形问题探究-备战2020年中考数学压轴题专题研究.doc


初中 八年级 上学期 数学 人教版

1340阅读234下载21页943 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版专题3 抛物线上的特殊平行四边形问题探究-备战2020年中考数学压轴题专题研究.doc
文档介绍:
专题三:抛物线上的特殊平行四边形问题探究
专题导入
导图:给出两点确定平行四边形关系如下图:
导例 如图1,在平面直角坐标系中,已知抛物线经过A(-4,0)、B(0,-4)、C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MAB的面积为S,求S关于m的函数关系式,并求出S的最大值;
(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

图1 图2
思路点拨
1.求抛物线的解析式,设交点式比较简便.
2.把△MAB分割为共底MD的两个三角形,高的和为定值OA.
3.当PQ与OB平行且相等时,以点P、Q、B、O为顶点的四边形是平行四边形,按照P、Q的上下位置关系,分两种情况列方程.
答案:(1) 因为抛物线与x轴交于A(-4,0)、C(2,0)两点,设y=a(x+4)(x-2).代入点B(0,-4),求得
.所以抛物线的解析式为.
(2)如图2,直线AB的解析式为y=-x-4.过点M作x轴的垂线交AB于D,那么.所以

因此当时,S取得最大值,最大值为4.
(3) 如果以点P、Q、B、O为顶点的四边形是平行四边形,那么PQ//OB,PQ=OB=4.
设点Q的坐标为,点P的坐标为.
①当点P在点Q上方时,.解得.
此时点Q的坐标为(如图3),或(如图4).
②当点Q在点P上方时,.
解得或(与点O重合,舍去).此时点Q的坐标为(-4,4) (如图5).

图3 图4 图5
典例
类型一:已知“两点”判断平行四边形存在性问题
例1、如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.
(1)分别求出直线AB和这条抛物线的解析式.
(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.
(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.
【分析】:(1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,﹣3)分别代入y=x2+mx+n与y=kx+b,得到关于m、n的两个方程组,解方程组即可;
(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),用P点的纵坐标减去M的纵坐标得到PM的长,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根据二次函数的最值得到
当t=﹣=时,PM最长为=,再利用三角形的面积公式利用S△ABM=S△BPM+S△APM计算即可;
(3)由PM∥OB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;当P在第三象限:PM=OB=3,t2﹣3t=3,分别解一元二次方程即可得到满足条件的t的值.
类型二:菱形的存在性问题
例2 如图2所示,直线y=x+c与x轴交于点A(-4,0),与y轴交于点C,抛物线y=-x2+bx+c经过点A,C.
(1)求抛物线的解析式;
(2)点E在抛物线的对称轴上,求CE+OE的最小值;
(3)如图2所示,点M是线段OA上的一个动点,过点M作垂直于x轴的直线与直线AC和抛物线分别交于点P,N.若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.
注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)
【分析】 (1)把已知点坐标代入解析式;
(2)取点C关于抛物线的对称轴直线l的对称点C′,由两点之间线段最短,最小值可得;
(3)①由已知,注意相似三角形的分类讨论.
②设出M坐标,求点P坐标.注意菱形是由等腰三角形以底边所在直线为对称轴对称得到的.本题即为研究△CPN为等腰三角形的情况.
类型三:正方形的存在性问题
例3如图1,在平面直角坐标系中,直
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档