下载此文档

人教版专题13几何图形初步与基本作图(共50题)-2020年中考数学真题分项汇编(解析版)【全国通用】.docx


初中 八年级 上学期 数学 人教版

1340阅读234下载32页339 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版专题13几何图形初步与基本作图(共50题)-2020年中考数学真题分项汇编(解析版)【全国通用】.docx
文档介绍:
2020年中考数学真题分项汇编(全国通用)
专题13几何图形初步与基本作图(共50题)
一.选择题(共25小题)
1.(2020•武威)若α=70°,则α的补角的度数是(  )
A.130° B.110° C.30° D.20°
【分析】根据补角的定义,两个角的和是180°即可求解.
【解析】α的补角是:180°﹣∠A=180°﹣70°=110°.
故选:B.
2.(2020•衡阳)下列不是三棱柱展开图的是(  )
A. B.
C. D.
【分析】根据三棱柱的两底展开是三角形,侧面展开是三个四边形,可得答案.
【解析】A、C、D中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.
B围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故C不能围成三棱柱.
故选:B.
3.(2020•泰州)把如图所示的纸片沿着虚线折叠,可以得到的几何体是(  )
A.三棱柱 B.四棱柱 C.三棱锥 D.四棱锥
【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.
【解析】观察展开图可知,几何体是三棱柱.
故选:A.
4.(2020•凉山州)点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为(  )
A.10cm B.8cm C.10cm 或8cm D.2cm 或4cm
【分析】根据线段中点的定义和线段三等分点的定义即可得到结论.
【解析】∵C是线段AB的中点,AB=12cm,
∴AC=BC=12AB=12×12=6(cm),
点D是线段AC的三等分点,
①当AD=13AC时,如图,
BD=BC+CD=BC+23AC=6+4=10(cm);
②当AD=23AC时,如图,
BD=BC+CD′=BC+13AC=6+2=8(cm).
所以线段BD的长为10cm或8cm,
故选:C.
5.(2020•自贡)如果一个角的度数比它补角的2倍多30°,那么这个角的度数是(  )
A.50° B.70° C.130° D.160°
【分析】若两个角的和等于180°,则这两个角互补.结合已知条件列方程求解.
【解析】设这个角是x°,根据题意,得
x=2(180﹣x)+30,
解得:x=130.
即这个角的度数为130°.
故选:C.
6.(2020•重庆)围成下列立体图形的各个面中,每个面都是平的是(  )
A.长方体 B.圆柱体
C.球体 D.圆锥体
【分析】根据平面与曲面的概念判断即可.
【解析】A、六个面都是平面,故本选项正确;
B、侧面不是平面,故本选项错误;
C、球面不是平面,故本选项错误;
D、侧面不是平面,故本选项错误;
故选:A.
7.(2020•广元)如图,a∥b,M、N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=(  )
A.180° B.360° C.270° D.540°
【分析】首先作出PA∥a,根据平行线性质,两直线平行同旁内角互补,可以得出∠1+∠2+∠3的值.
【解析】过点P作PA∥a,
∵a∥b,PA∥a,
∴a∥b∥PA,
∴∠1+∠MPA=180°,∠3+∠APN=180°,
∴∠1+∠MPA+∠3+∠APN=180°+180°=360°,
∴∠1+∠2+∠3=360°.
故选:B.
8.(2020•长沙)如图:一块直角三角板的60°角的顶点A与直角顶点C分别在两平行线FD、GH上,斜边AB平分∠CAD,交直线GH于点E,则∠ECB的大小为(  )
A.60° B.45° C.30° D.25°
【分析】依据角平分线的定义以及平行线的性质,即可得到∠ACE的度数,进而得出∠ECB的度数.
【解析】∵AB平分∠CAD,
∴∠CAD=2∠BAC=120°,
又∵DF∥HG,
∴∠ACE=180°﹣∠DAC=180°﹣120°=60°,
又∵∠ACB=90°,
∴∠ECB=∠ACB﹣∠ACE=90°﹣60°=30°,
故选:C.
9.(2020•北京)如图,AB和CD相交于点O,则下列结论正确的是(  )
A.∠1=∠2 B.∠2=∠3 C.∠1>∠4+∠5 D.∠2<∠5
【分析】根据对顶角定义和外角的性质逐个判断即可.
【解析】A.∵∠1和∠2是对顶角,
∴∠1=∠2,
故A正确;
B.∵∠2=∠A+∠3,
∴∠2>∠3,
故B错误;
C.∵∠1=∠4+∠5,
故③错误;
D.∵∠2=∠4+∠5,
∴∠2>∠5;
故D错误;
故选:
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档