下载此文档

人教版专题14 图形的相似-2020年中考数学模拟试题优选汇编考前必练(解析版).docx


初中 八年级 上学期 数学 人教版

1340阅读234下载33页444 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版专题14 图形的相似-2020年中考数学模拟试题优选汇编考前必练(解析版).docx
文档介绍:
2020年中考数学模拟试题优选汇编考前必练
专题14 图形的相似
一.选择题
1.(2020•宁波模拟)如图,△ABC是等边三角形,D是BC边上一点,P是AD上一点,连结PB,PC,若=,∠BPC=120°,则的值为(  )
A. B. C. D.
【解析】如图,过点P作EF∥BC交AB于E,交AC于F,
∵EF∥BC,
∴,
∴,
∴设PE=4a,PF=9a,
∵∠BPC=120°,
∴∠BPE+∠CPF=60°,
∵△ABC是等边三角形,
∴∠ABC=∠ACB=∠BAC=60°,AB=AC,
∵EF∥BC,
∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,
∴△AEF是等边三角形,
∴AE=AF,
∴BE=CF,
∵∠AEF=∠ABP+∠BPE=60°,∠AFE=∠ACP+∠CPF=60°,
∴∠BPE=∠PCF,∠CPF=∠ABP,
∴△BPE∽△PCF,
∴,
∴PE•PF=BE2=36a2,
∴BE=6a,
∴=,
故选:C.
2.(2020•番禺区一模)如图,在菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AC于点O,则下列结论:①△ABF≌△CAE;②∠FHC=∠B;③△AEH~△DAH;④AE•AD=AH•AF;其中正确的结论个数是(  )
A.1个 B.2个 C.3个 D.4个
【解析】∵四边形ABCD是菱形,
∴AB=BC,
∵AB=AC,
∴AB=BC=AC,
即△ABC是等边三角形,
同理:△ADC是等边三角形
∴∠B=∠EAC=60°,
在△ABF和△CAE中,

∴△ABF≌△CAE(SAS);
∴∠BAF=∠ACE,EC=AF,
∵∠FHC=∠ACE+∠FAC=∠BAF+∠FAC=∠BAC=60°,
∴∠FHC=∠B,
故①正确,②正确;
∵∠AHC+∠ADC=120°+60°=180°,
∴点A,H,C,D四点共圆,
∴∠AHD=∠ACD=60°,∠ACH=∠ADH=∠BAF,
∴∠AHD=∠FHC=∠AHE=60°,
∴△AEH~△DAH,故③正确;
∵∠ACE=∠BAF,∠AEH=∠AEC,
∴△AEH∽△CEA,
∴,
∴AE•AC=AH•EC,
∴AE•AD=AH•AF,
故④正确;
故选:D.
3.(2020•江干区一模)如图.在△ABC中,DE∥BC,∠B=∠ACD,则图中相似三角形有(  )
A.2对 B.3对 C.4对 D.5对
【解析】∵∠B=∠ACD,∠A=∠A,
∴△ACD∽△ABC,
∵DE∥BC,
∴△ADE∽△ABC,
∴△ACD∽△ADE,
∵DE∥BC,
∴∠EDC=∠DCB,
∵∠B=∠DCE,
∴△CDE∽△BCD,
故共4对,
故选:C.
4.(2020•萧山区模拟)已知平行四边形ABCD,点E是DA延长线上一点,则(  )
A.= B.= C.= D.=
【解析】∵四边形ABCD 是平行四边形,
∴AB∥CD,AD∥BC,
∴△AEM∽△DEC,
∴=,故A错误;
∵AM∥CD,
∴=,故B正确;
∵BM∥CD,
∴△BMF∽△DCF,
∴,故C错误,
∵ED∥BC,
∴△EFD∽△CFB,
∴,
∵AB∥CD,
∴△BFM∽△DFC,
∴=,
∴=,故D错误.
故选:B.
5.(2020•宝安区二模)如图,在△ABC中,∠ACB=90°,AC=BC,点D为边AC上一点,连接BD,作AH⊥BD
的延长线于点H,过点C作CE∥AH与BD交与点E,连结AE并延长与BC交于点F,现有如下4个结论:①∠HAD=∠CBD;②△ADE∽△BFE;③CE•AH=HD•BE;④若D为AC中点,则=()2.其中正确结论有(  )
A.1个 B.2个 C.3个 D.4个
【解析】∵AH⊥BD,
∴∠AHD=90°,
∵∠BCD=90°,∠ADH=∠BDC,
∴∠HAD=∠CBD;所以①正确;
当CD=CF时,
∵CA=CB,
∴△CAF≌△CBD,
∴∠CAF=∠CBD,
此时△ADE∽△BEF,所以②错误;
∵∠HAD=∠CBE,∠AHD=∠BEC,
∴△AHD∽△BEC,
∴AH:BE=DH:CE,
∴CE•AH=HD•BE,所以③正确;
∵CE为BD上的高,
∴CE2=DE•BE,
∴()2==,
∵EF与CD不平行,
∴≠,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档