下载此文档

人教版专题28二次函数(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版).doc


初中 八年级 下学期 数学 人教版

1340阅读234下载215页11.31 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版专题28二次函数(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版).doc
文档介绍:
专题28二次函数(2)(全国一年)
学校:___________姓名:___________班级:___________考号:___________
一、填空题
1.(2020·辽宁朝阳?中考真题)抛物线与x轴有交点,则k的取值范围是___________________.
【答案】且
【解析】
【分析】
直接利用根的判别式进行计算,再结合,即可得到答案.
【详解】
解:∵抛物线与x轴有交点,
∴,
∴,
又∵,
∴,
∴k的取值范围是且;
故答案为:且.
【点睛】
本题考查了二次函数与坐标轴有交点的问题,解题的关键是掌握根的判别式求参数的取值范围.
2.(2020·山东烟台?中考真题)二次函数y=ax2+bx+c的图象如图所示,下列结论:①ab>0;②a+b﹣1=0;③a>1;④关于x的一元二次方程ax2+bx+c=0的一个根为1,另一个根为﹣.其中正确结论的序号是_____.
【答案】②③④
【解析】
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.
【详解】
解:①由二次函数的图象开口向上可得a>0,对称轴在y轴的右侧,b<0,
∴ab<0,故①错误;
②由图象可知抛物线与x轴的交点为(1,0),与y轴的交点为(0,﹣1),
∴c=﹣1,
∴a+b﹣1=0,故②正确;
③∵a+b﹣1=0,
∴a﹣1=﹣b,
∵b<0,
∴a﹣1>0,
∴a>1,故③正确;
④∵抛物线与y轴的交点为(0,﹣1),
∴抛物线为y=ax2+bx﹣1,
∵抛物线与x轴的交点为(1,0),
∴ax2+bx﹣1=0的一个根为1,根据根与系数的关系,另一个根为﹣,故④正确;
故答案为②③④.
【点评】
主要考查图象与二次函数系数之间的关系,二次函数与方程之间的转换.会利用特殊值代入法求得特殊的式子,如:
y=a+b+c,然后根据图象判断其值.
3.(2020·黑龙江大庆?中考真题)已知关于的一元二次方程,有下列结论:
①当时,方程有两个不相等的实根;
②当时,方程不可能有两个异号的实根;
③当时,方程的两个实根不可能都小于1;
④当时,方程的两个实根一个大于3,另一个小于3.
以上4个结论中,正确的个数为_________.
【答案】①③④
【解析】
【分析】
由根的判别式,根与系数的关系进行判断,即可得到答案.
【详解】
解:根据题意,∵一元二次方程,
∴;
∴当,即时,方程有两个不相等的实根;故①正确;
当,解得:,方程有两个同号的实数根,则当时,方程可能有两个异号的实根;故②错误;
抛物线的对称轴为:,则当时,方程的两个实根不可能都小于1;故③正确;
由,则,解得:或;故④正确;
∴正确的结论有①③④;
故答案为:①③④.
【点睛】
本题考查了二次函数的性质,一元二次方程根的判别式,根与系数的关系,解题的关键是掌握所学的知识进行解题.
4.(2020·山东淄博?中考真题)某快递公司在甲地和乙地之间共设有29个服务驿站(包括甲站、乙站),一辆快递货车由甲站出发,依次途经各站驶往乙站,每停靠一站,均要卸下前面各站发往该站的货包各1个,又要装上该站发往后面各站的货包各1个.在整个行程中,快递货车装载的货包数量最多是_____个.
【答案】210
【解析】
【分析】
【详解】
根据理解题意找出题目中所给的等量关系,找出规律,写出货包数量的函数解析式,再根据二次函数最值的求法求出快递货车装载的货包数量最多的站.
【解答】解:当一辆快递货车停靠在第x个服务驿站时,
快递货车上需要卸下已经通过的(x﹣1)个服务驿站发给该站的货包共(x﹣1)个,
还要装上下面行程中要停靠的(n﹣x)个服务驿站的货包共(n﹣x)个.
根据题意,完成下表:
服务驿站序号
在第x服务驿站启程时快递货车货包总数
1
n﹣1
2
(n﹣1)﹣1+(n﹣2)=2(n﹣2)
3
2(n﹣2)﹣2+(n﹣3)=3(n﹣3)
4
3(n﹣3)﹣3+(n﹣4)=4(n﹣4)
5
4(n﹣4)﹣4+(n﹣5)=5(n﹣5)


n
0
由上表可得y=x(n﹣x).当n=29时,y=x(29﹣x)=﹣x2+29x=﹣(x﹣14.5)2+210.25,
当x=14或15时,y取得最大值210.
答:在整个行程中,快递货车装载的货包数量最多是210个.
故答案为:210.
【点评】本题考查了规律型:数字的变化类,二次函
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档