下载此文档

人教版专题20:全等三角线中的辅助线做法及常见题型之手拉手模型-备战2021中考数学解题方法系统训练(全国通用).doc


初中 九年级 上学期 数学 人教版

1340阅读234下载30页886 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版专题20:全等三角线中的辅助线做法及常见题型之手拉手模型-备战2021中考数学解题方法系统训练(全国通用).doc
文档介绍:
试卷第2页,总6页
专题20:第三章 全等三角形中的辅助线的做法及常见题型之手拉手模型
一、单选题
1.如图所示,是线段上一点,分别以,为边在同侧作等边和等边,交于,交于,则图中可通过旋转而得到的全等三角形的对数为( )对.
A.1 B.2
C.3 D.4
2.如图,正方形的边长为4,点分别在上,若,且,则的长为( )
A. B. C. D.
3.如图,和都是等腰直角三角形,,四边形是平行四边形,下列结论中错误的是( )
试卷第2页,总6页
A.以点为旋转中心,逆时针方向旋转后与重合
B.以点为旋转中心,顺时针方向旋转后与重合
C.沿所在直线折叠后,与重合
D.沿所在直线折叠后,与重合
二、填空题
4.在锐角三角形ABC中,AH是边BC的高,分别以AB,AC为边向外作正方形ABDE和正方形ACFG,连接CE,BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE;②BG⊥CE;③AM是△AEG的中线;④∠EAM=∠ABC.其中正确的是_________.
5.如图所示,等边的顶点在轴的负半轴上,点的坐标为,则点坐标为_______;点是位于轴上点左边的一个动点,以为边在第三象限内作等边,若点.小明所在的数学兴趣合作学****小组借助于现代互联网信息技术,课余时间经过探究发现无论点
试卷第2页,总6页
在点左边轴负半轴任何位置,,之间都存在着一个固定的一次函数关系,请你写出这个关系式是_____.
6.如图,C在线段AB上,在AB的同侧作等边三角形△ACM和△BCN,连接AN,BM,若∠MBN=38°,则∠ANB=_____.
三、解答题
7.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE(正三角形也叫等边三角形,它的三条边都相等,三个内角都等于60°),AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.试说明:
(1)AD=BE;
(2)填空∠AOE= °;
(3)CP=CQ;
8.如图,在ABC和ADE中,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.
试卷第2页,总6页
(1)问题提出:如图1,若AD=AE,AB=AC.
①BD与CE的数量关系为   ;
②∠BPC的度数为   .
(2)猜想论证:如图2,若∠ADE=∠ABC=30°,则(1)中的结论是否成立?请说明理由.如果不正确请写出正确结论.
(3)拓展延伸:在(1)的条件中,若AB=3,AD=1,若把ADE绕点A旋转,当∠EAC=90°时,直接写出PB的长.

9.在△ABC中,AB=AC,点D是直线BC上一点(不与B. C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图1,当点D在线段BC上,如果∠BAC=90∘,则∠BCE= 度;
(2)如图2,
①说明:△ABD≌△ACE.
②说明:CE+DC=BC.
③设∠BAC=α,∠BCE=β.当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.
10.如图1,是以为直角的直角三角形,分别以,为边向外作正方形,,连结,,与交于点,与交于点.
试卷第2页,总6页
(1)求证:;
(2)如图2,在图1基础上连接和,若,求四边形的面积.
11.探究等边三角形“手拉手”问题.
(1)如图1,已如△ABC,△ADE均为等边三角形,点D在线段BC上,且不与点B、点C重合,连接CE,试判断CE与BA的位置关系,并说明理由;
(2)如图2,已知△ABC、△ADE均为等边三角形,连接CE、BD,若∠DEC=60°,试说明点B,点D,点E在同一直线上;
(3)如图3,已知点E在ABC外,并且与点B位于线段AC的异侧,连接BE、CE.若∠BEC=60°,猜测线段BE、AE、CE三者之间的数量关系,并说明理由.
12.给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.
(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;
(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.
①求证:△BCE是等边三角形;
②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.
试卷第2页,总6页
参考答
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档