下载此文档

人教版专题45四边形(4)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版).doc


初中 九年级 上学期 数学 人教版

1340阅读234下载279页11.80 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版专题45四边形(4)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版).doc
文档介绍:
专题45四边形(4)(全国一年)
学校:___________姓名:___________班级:___________考号:___________
一、填空题
1.(2020·贵州黔东南?中考真题)如图,矩形ABCD中,AB=2,BC=,E为CD的中点,连接AE、BD交于点P,过点P作PQ⊥BC于点Q,则PQ=_____.
【答案】
【解析】
【分析】
根据矩形的性质得到AB∥CD,AB=CD,AD=BC,∠BAD=90°,根据线段中点的定义得到DE=CD=AB,根据相似三角形的判定证明△ABP∽△EDP,再利用相识三角形的性质和判定即可得到结论.
【详解】
解:∵四边形ABCD是矩形,
∴AB∥CD,AB=CD,AD=BC,∠BAD=90°,
∵E为CD的中点,
∴DE=CD=AB,
∴△ABP∽△EDP,
∴=,
∴=,
∴=,
∵PQ⊥BC,
∴PQ∥CD,
∴△BPQ∽△DBC,
∴==,
∵CD=2,
∴PQ=,
故答案为:.
【点睛】
本题主要考查了矩形的性质,相似三角形的判定和性质的应用,运用矩形的性质和相似三角形判定和性质证明△ABP∽△EDP得到=是解题的关键.
2.(2020·贵州遵义?中考真题)如图,对折矩形纸片使与重合,得到折痕,再把纸片展平.是上一点,将沿折叠,使点的对应点落在上.若,则的长是_________.
【答案】
【解析】
【分析】
在Rt△A´BM中,解直角三角形求出∠BA′M=30°,再证明∠ABE=30°即可解决问题.
【详解】
解:∵将矩形纸片ABCD对折一次,使边AD与BC重合,得到折痕MN,
∴AB=2BM,∠A′MB=90°,MN∥BC.
∵将△ABE沿BE折叠,使点A的对应点A′落在MN上.
∴A′B=AB=2BM.
在Rt△A′MB中,∵∠A′MB=90°,
∴sin∠MA′B=,
∴∠MA′B=30°,
∵MN∥BC,
∴∠CBA′=∠MA′B=30°,
∵∠ABC=90°,
∴∠ABA′=60°,
∴∠ABE=∠EBA′=30°,
∴BE=.
故答案为:.
【点睛】
本题考查了矩形与折叠,锐角三角函数的定义,平行线的性质,熟练掌握并灵活运用翻折变换的性质是解题的关键.
3.(2020·浙江衢州?中考真题)小慧用图1中的一副七巧板拼出如图2所示的“行礼图”,已知正方形ABCD的边长为4dm,则图2中h的值为_____dm.
【答案】
【解析】
【分析】
根据七巧板的特征,依次得到②④⑥⑦的高,再相加即可求解.
【详解】
解:∵正方形ABCD的边长为4dm,
∴②的斜边上的高是2dm,④的高是1dm,⑥的斜边上的高是1dm,⑦的斜边上的高是dm,
∴图2中h的值为(4+)dm.
故答案为:(4+).
【点睛】
本题主要考查正方形的性质,解题的关键是求出②④⑥⑦的高.
4.(2020·贵州黔西?中考真题)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平,再一次折叠,使点D落到EF上点G处,并使折痕经过点A,已知BC=2,则线段EG的长度为________.
【答案】
【解析】
【分析】
直接利用翻折变换的性质以及直角三角形的性质得出∠2=∠4,再利用平行线的性质得出∠1=∠2=∠3,进而得出答案.
【详解】
解:如答图,由第一次折叠得EF⊥AD,AE=DE,
∴∠AEF=90°,AD=2AE.
∵四边形ABCD是矩形,
∴∠D=∠DAB=90°,
∴∠AEF=∠D,
∴EF∥CD,
∴△AEN∽△ADM,
∴==,
∴AN=AM,
∴AN=MN,
又由第二次折叠得∠AGM=∠D=90°,
∴NG=AM,
∴AN=NG,
∴∠2=∠4.
由第二次折叠得∠1=∠2,
∴∠1=∠4.
∵AB∥CD,EF∥CD,
∴EF∥AB,∴∠3=∠4,
∴∠1=∠2=∠3.
∵∠1+∠2+∠3=∠DAB=90°,
∴∠1=∠2=∠3=30°.
∵四边形ABCD是矩形,
∴AD=BC=2.
由第二次折叠得AG=AD=2.
由第一次折叠得AE=AD=×2=1.
在Rt△AEG中,由勾股定理得EG===,
故答案为:.
【点睛】
此题主要考查了翻折变换的性质以及矩形的性质,正确得出∠2=∠4是解题关键.
5.(2020·贵州铜仁?中考真题)如图,在矩形ABCD中,AD=4,将∠A向内翻析,点A落在BC上,记为A1,折痕为DE.若将∠B沿EA1向内翻折,点B恰好落在DE上,记为B1,则AB
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档