下载此文档

人教版专题46:第9章函数的综合问题之二次函数综合题-备战2021中考数学解题方法系统训练(全国通用)(解析版).doc


初中 九年级 下学期 数学 人教版

1340阅读234下载69页3.92 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版专题46:第9章函数的综合问题之二次函数综合题-备战2021中考数学解题方法系统训练(全国通用)(解析版).doc
文档介绍:
46第9章函数的综合问题之二次函数综合题
一、单选题
1.已知抛物线y=x2+(2m﹣6)x+m2﹣3与y轴交于点A,与直线x=4交于点B,当x2时,y值随x值的增大而增大.记抛物线在线段AB下方的部分为G(包含A、B两点),M为G上任意一点,设M的纵坐标为t,若,则m的取值范围是(  )
A.m≥ B.≤m≤3 C.m≥3 D.1≤m≤3
【答案】A
【分析】当x2时,y值随x值的增大而增大,得由抛物线在线段AB下方的部分为G(包含A、B两点),M为G上任意一点,M的纵坐标为t,,得,分三种情况讨论,当对称轴在y轴的右侧时,有>即< 当对称轴是y轴时,有 当对称轴在y轴的左侧时,有>从而可得结论.
【解答】解:当对称轴在y轴的右侧时,

由①得:<
由②得:
由③得:
解得:<3,
当对称轴是y轴时,
m=3,符合题意,
当对称轴在y轴的左侧时,
解得m>3,
综上所述,满足条件的m的值为.
故选:A.
【点评】本题考查二次函数图形与系数的关系,二次函数图象上的点的坐标特征,解不等式组,解题的关键是理解题意,学会利用对称轴的位置进行分类讨论思考问题.
2.如图,已知抛物线的对称轴为直线.给出下列结论:
①; ②; ③; ④.
其中,正确的结论有( )
A.1个 B.2个 C.3个 D.4个
【答案】C
【分析】根据开口方向及抛物线与y轴交点的位置即可判断①;根据抛物线与x轴交点的个数即可判断②;根据对称轴为直线,即可判断③;根据抛物线的对称性,可知抛物线经过点(-1,0),即可判断④.
【解答】解:∵抛物线开口向下,则a<0,
∵抛物线交于y轴的正半轴,则c>0,
∴ac<0,故①正确;
∵抛物线与x轴有两个交点,
∴,故②正确;
∵抛物线的对称轴为直线,则,即2a=-b,
∴2a+b=0,故③错误;
∵抛物线经过点(3,0),且对称轴为直线,
∴抛物线经过点(-1,0),则,故④正确;
∴正确的有①②④,共3个,
故选:C.
【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).
3.如图是抛物线,其顶点为,且与轴的个交点在点和之间,则下列结论正确的个数是( )个
①若抛物线与轴的另一个交点为,则;②;③若时,随的增大而增大,则.
A. B. C. D.
【答案】D
【分析】①根据抛物线的对称性得:AD=BD,列不等式结论;
②将顶点坐标(1,n)代入抛物线的解析式中,列两式可得结论;
③根据抛物线的对称轴由此作判断;
【解答】解:①如图,
设抛物线与x轴的交点为A和B(A在B的右侧),
则3-1<AD<4-1,2<AD<3,
由对称性得:AD=BD,
∴2<BD<3,
∵B(k,0),
∴BD=1-k,
∴2<1-k<3,
∴-2<k<-1,所以选项①正确;
②∵抛物线的顶点坐标为(1,n),
∴ ,b=-2a,
a+b+c=n,
a-2a+c=n,
∴-a+c=n,
c-a=n,
所以选项②正确;
③∵抛物线的对称轴是直线x=1,
∴若x<1时,y随x的增大而增大,
则m≥-1;所以选项③正确;
故选D
【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),明确以下几点:
①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;
②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;
③常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).
4.二次函数的部分图象如图所示,则下列说法:①abc>0;② 2a+b=0;③ a(x+1)(x-3)=0;④ 2c-3b=0.其中正确的个数为(  )
A.1 B.2 C.3 D.4
【答案】B
【分析】先根据二次函数的对称性补全函数图像,由函数的开口方向,对称轴以及与y轴的交点确定a,b,c的符号,从而判断①;根据对称轴的
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档