下载此文档

人教第26节 空间向量在立体几何中的应用(解析版).docx


高中 高一 下学期 数学 人教版

1340阅读234下载16页991 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教第26节 空间向量在立体几何中的应用(解析版).docx
文档介绍:
第26节 空间向量在立体几何中的应用
基础知识要夯实
平行垂直问题基础知识
直线l的方向向量为a=(a1,b1,c1).平面α,β的法向量u=(a3,b3,c3),v=(a4,b4,c4)
(1)线面平行:l∥α⇔a⊥u⇔a·u=0⇔a1a3+b1b3+c1c3=0
(2)线面垂直:l⊥α⇔a∥u⇔a=ku⇔a1=ka3,b1=kb3,c1=kc3
(3)面面平行:α∥β⇔u∥v⇔u=kv⇔a3=ka4,b3=kb4,c3=kc4
(4)面面垂直:α⊥β⇔u⊥v⇔u·v=0⇔a3a4+b3b4+c3c4=0
利用空间向量求空间角基础知识
(1)向量法求异面直线所成的角:若异面直线a,b的方向向量分别为a,b,异面直线所成的角为θ,则cos θ=|cos〈a,b〉|=.
(2)向量法求线面所成的角:求出平面的法向量n,直线的方向向量a,设线面所成的角为θ,则sin θ=|cos〈n,a〉|=.
(3)向量法求二面角:求出二面角α-l-β的两个半平面α与β的法向量n1,n2,
若二面角α-l-β所成的角θ为锐角,则cos θ=|cos〈n1,n2〉|=;
若二面角α-l-β所成的角θ为钝角,则cos θ=-|cos〈n1,n2〉|=-.
基本技能要落实
考点一 通过空间向量判断位置关系
【例1】如图所示,在底面是矩形的四棱锥P­ABCD中,PA⊥底面ABCD,E,F分别是PC,PD的中点,PA=AB=1,BC=2.
(1)求证:EF∥平面PAB;
(2)求证:平面PAD⊥平面PDC.
【解析】以A为原点,AB,AD,AP所在直线分别为x轴,y轴,z轴,建立空间直角坐标系如图所示,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,1),所以E,F,=,=(1,0,-1),=(0,2,-1),=(0,0,1),=(0,2,0),
=(1,0,0),=(1,0,0).
(1)因为=-,所以∥,即EF∥AB.
又AB⊂平面PAB,EF⊄平面PAB,所以EF∥平面PAB.
(2)因为·=(0,0,1)·(1,0,0)=0,·=(0,2,0)·(1,0,0)=0,
所以⊥,⊥,即AP⊥DC,AD⊥DC.
又AP∩AD=A,AP⊂平面PAD,AD⊂平面PAD,所以DC⊥平面PAD.因为DC⊂平面PDC,所以平面PAD⊥平面PDC.
【方法技巧】使用空间向量方法证明线面平行时,既可以证明直线的方向向量和平面内一条直线的方向向量平行,然后根据线面平行的判定定理得到线面平行,也可以证明直线的方向向量与平面的法向量垂直;证明面面垂直既可以证明线线垂直,然后使用判定定理进行判定,也可以证明两个平面的法向量垂直.
【跟踪训练】
1.在直三棱柱ABC­A1B1C1中,∠ABC=90°,BC=2,CC1=4,点E在线段BB1上,
且EB1=1,D,F,G分别为CC1,C1B1,C1A1的中点.
求证:(1)B1D⊥平面ABD;
(2)平面EGF∥平面ABD.
证明:(1)以B为坐标原点,BA、BC、BB1所在的直线分别为x轴、y轴、z轴建立空间直角坐标系,如图所示,则B(0,0,0),D(0,2,2),B1(0,0,4),设BA=a,则A(a,0,0),
所以=(a,0,0),=(0,2,2),=(0,2,-2),
·=0,·=0+4-4=0,即B1D⊥BA,B1D⊥BD.
又BA∩BD=B,因此B1D⊥平面ABD.
(2)由(1)知,E(0,0,3),G,F(0,1,4),则=,=(0,1,1),
·=0+2-2=0,·=0+2-2=0,即B1D⊥EG,B1D⊥EF.
又EG∩EF=E,因此B1D⊥平面EGF. 结合(1)可知平面EGF∥平面ABD.
考点二 空间中的角
【例2】如图,在直三棱柱A1B1C1­ABC中,AB⊥AC,AB=AC=2,A1A=4,
点D是BC的中点.
(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1所成二面角的正弦值.
【解析】(1)以A为坐标原点,建立如图所示的空间直角坐标系A­xyz,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A1(0,0,4),C1(0,2,4),所以=(2,0,-4),=(1,-1,-4).
因为cos〈,〉==所以异面直线A1B与C1D所成角的余弦值为.
(2)设平面ADC1的法向量为n1=(x,y,z),因为=(1,1,0),=(0,2,4),所以n1·=0,n1·=0,即x+y=0且y+2z=0,取z=1,得x=2,y=-2,所以,n1=(2,-2,1)是平面ADC1的一个法向量
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档