下载此文档

人教考向32椭圆(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(解析版).docx


高中 高三 上学期 数学 人教版

1340阅读234下载35页2.48 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教考向32椭圆(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(解析版).docx
文档介绍:
考向32 椭圆
1.(2022·全国甲(文)T11) 已知椭圆的离心率为,分别为C的左、右顶点,B为C的上顶点.若,则C的方程为( )
A. B. C. D.
【答案】B
【解析】因为离心率,解得,,
分别为C左右顶点,则,
B为上顶点,所以.
所以,因为
所以,将代入,解得,
故椭圆的方程为.
2.(2022·全国甲(理)T10) 椭圆的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线的斜率之积为,则C的离心率为( )
A. B. C. D.
【答案】A
【解析】,设,则,则,
故,
又,则,所以,即,
所以椭圆的离心率.
3.(2022·新高考Ⅰ卷T16) 已知椭圆,C的上顶点为A,两个焦点为,,离心率为.过且垂直于的直线与C交于D,E两点,,则的周长是________________.
【答案】13
【解析】∵椭圆的离心率为,∴,∴,∴椭圆的方程为,不妨设左焦点为,右焦点为,如图所示,∵,∴,∴为正三角形,∵过且垂直于的直线与C交于D,E两点,为线段的垂直平分线,∴直线的斜率为,斜率倒数为, 直线的方程:,代入椭圆方程,整理化简得到:,
判别式,
∴,
∴ , 得,
∵为线段的垂直平分线,根据对称性,,∴的周长等于的周长,利用椭圆的定义得到周长为.
4.(2022·新高考Ⅱ卷T16) 已知椭圆,直线l与椭圆在第一象限交于A,B两点,与x轴,y轴分别交于M,N两点,且,则直线l的方程为___________.
【答案】
【解析】令的中点为,因为,所以,
设,,则,,
所以,即
所以,即,设直线,,,
令得,令得,即,,所以,
即,解得或(舍去),
又,即,解得或(舍去),
所以直线,即;
5.(2022·全国乙(理)T20(文)T)21. 已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过
两点.
(1)求E的方程;
(2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点.
【答案】(1) (2)
【解析】【小问1详解】
解:设椭圆E的方程为,过,
则,解得,,所以椭圆E的方程为:.
【小问2详解】
,所以,
①若过点的直线斜率不存在,直线.代入,
可得,,代入AB方程,可得
,由得到.求得HN方程:
,过点.
②若过点的直线斜率存在,设.
联立得,
可得,,

联立可得
可求得此时,
将,代入整理得,
将代入,得
显然成立,
综上,可得直线HN过定点
【点睛】求定点、定值问题常见的方法有两种:
①从特殊入手,求出定值,再证明这个值与变量无关;
②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.
6.(2022·浙江卷T21)如图,已知椭圆.设A,B是椭圆上异于的两点,且点在线段上,直线分别交直线于C,D两点.
(1)求点P到椭圆上点的距离的最大值;
(2)求的最小值.
【答案】(1); (2).
【解析】【小问1详解】
设是椭圆上任意一点,,则
,当且仅当时取等号,故的最大值是.
【小问2详解】
设直线,直线方程与椭圆联立,可得,设,所以,
因为直线与直线交于,
则,同理可得,.则

当且仅当时取等号,故的最小值为.
1.求椭圆离心率或其范围的方法
解题的关键是借助图形建立关于a,b,c的关系式(等式或不等式),转化为e的关系式,常用方法如下:
(1)直接求出a,c,利用离心率公式e=求解.
(2)由a与b的关系求离心率,利用变形公式e=求解.
(3)构造a,c的齐次式.离心率e的求解中可以不求出a,c的具体值,而是得出a与c的关系,从而求得e.
2.利用椭圆几何性质求值或范围的思路
(1)将所求问题用椭圆上点的坐标表示,利用坐标范围构造函数或不等关系.
(2)将所求范围用a,b,c表示,利用a,b,c自身的范围、关系求解.
1.点P(x0,y0)和椭圆的位置关系
(1)点P(x0,y0)在椭圆内⇔
(2)点P(x0,y0)在椭圆上⇔
(3)点P(x0,y0)在椭圆外⇔
2.焦点三角形
如图,椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角形.设r1=|PF1|,r2=|PF2|,∠F1PF2=θ,△PF1F2的面积为S,则在椭圆+=1(a>b>0)中:
(1)当r1=r2,即点P的位置为短轴端点时,θ最大;
(2),当|y0|=b,即点P
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档