下载此文档

人教版高中数学第5章 §5.1 平面向量的概念及线性运算.docx


高中 高三 上学期 数学 人教版

1340阅读234下载19页2.10 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第5章 §5.1 平面向量的概念及线性运算.docx
文档介绍:
§5.1 平面向量的概念及线性运算
考试要求 1.理解平面向量的意义、几何表示及向量相等的含义.2.掌握向量的加法、减法运算,并理解其几何意义及向量共线的含义.3.了解向量线性运算的性质及其几何意义.
知识梳理
1.向量的有关概念
(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).
(2)零向量:长度为0的向量,记作0.
(3)单位向量:长度等于1个单位长度的向量.
(4)平行向量:方向相同或相反的非零向量,也叫做共线向量,规定:零向量与任意向量平行.
(5)相等向量:长度相等且方向相同的向量.
(6)相反向量:长度相等且方向相反的向量.
2.向量的线性运算
向量运算
法则(或几何意义)
运算律
加法
交换律:
a+b=b+a;
结合律:
(a+b)+c=a+(b+c)
减法
a-b=a+(-b)
数乘
|λ a|=|λ||a|,当λ>0时,λa的方向与a的方向相同;
λ(μ a)=(λμ)a;
当λ<0时,λa的方向与a的方向相反;
当λ=0时,λa=0
(λ+μ)a=λa+μa;
λ(a+b)=λa+λb
3.向量共线定理
向量a(a≠0)与b共线的充要条件是:存在唯一一个实数λ,使得b=λa.
常用结论
1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即+++…+=,特别地,一个封闭图形,首尾连接而成的向量和为零向量.
2.若F为线段AB的中点,O为平面内任意一点,则=(+).
3.若A,B,C是平面内不共线的三点,则++=0⇔P为△ABC的重心,=(+).
4.若=λ+μ(λ,μ为常数),则A,B,C三点共线的充要条件是λ+μ=1.
5.对于任意两个向量a,b,都有||a|-|b||≤|a±b|≤|a|+|b|.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)|a|与|b|是否相等,与a,b的方向无关.( √ )
(2)若向量a与b同向,且|a|>|b|,则a>b.( × )
(3)若向量与向量是共线向量,则A,B,C,D四点在一条直线上.( × )
(4)起点不同,但方向相同且模相等的向量是相等向量.( √ )
教材改编题
1.(多选)下列命题中,正确的是(  )
A.若a与b都是单位向量,则a=b
B.直角坐标平面上的x轴、y轴都是向量
C.若用有向线段表示的向量与不相等,则点M与N不重合
D.海拔、温度、角度都不是向量
答案 CD
解析 A错误,由于单位向量长度相等,但是方向不确定;B错误,由于只有方向,没有大小,故x轴、y轴不是向量;C正确,由于向量起点相同,但长度不相等,所以终点不同;D正确,海拔、温度、角度只有大小,没有方向,故不是向量.
2.下列各式化简结果正确的是(  )
A.+=
B.+++=
C.+-=0
D.--=
答案 B
3.已知a与b是两个不共线的向量,且向量a+λb与-(b-3a)共线,则λ=________.
答案 -
解析 由题意知存在k∈R,
使得a+λb=k[-(b-3a)],
所以解得
题型一 向量的基本概念
例1 (1)(多选)给出下列命题,不正确的有(  )
A.若两个向量相等,则它们的起点相同,终点相同
B.若A,B,C,D是不共线的四点,且=,则四边形ABCD为平行四边形
C.a=b的充要条件是|a|=|b|且a∥b
D.已知λ,μ为实数,若λa=μb,则a与b共线
答案 ACD
解析 A错误,两个向量起点相同,终点相同,则两个向量相等,但两个向量相等,不一定有相同的起点和终点;
B正确,因为=,所以||=||且∥,又A,B,C,D是不共线的四点,所以四边形ABCD为平行四边形;
C错误,当a∥b且方向相反时,即使|a|=|b|,也不能得到a=b,所以|a|=|b|且a∥b不是a=b的充要条件,而是必要不充分条件;
D错误,当λ=μ=0时,a与b可以为任意向量,满足λa=μb,但a与b不一定共线.
(2)如图,在等腰梯形ABCD中,对角线AC与BD交于点P,点E,F分别在腰AD,BC上,EF过点P,且EF∥AB,则下列等式中成立的是(  )
A.= B.=
C.= D.=
答案 D
教师备选
(多选)下列命题为真命题的是(  )
A.若a与b为非零向量,且a∥b,则a+b必与a或b平行
B.若e为单位向量,且a∥e,则a=|a|e
C.两个非零向量a,b,若|a-b|=|a|+|b|,则a与b共线且反向
D.“两个向量平行”是“这两个向量相等”的必要不充
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档