下载此文档

人教高中数学课时跟踪检测(四十四) 椭圆 作业.doc


高中 高三 上学期 数学 人教版

1340阅读234下载11页231 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学课时跟踪检测(四十四) 椭圆 作业.doc
文档介绍:
课时跟踪检测(四十四) 椭圆
一、基础练——练手感熟练度
1.(多选)已知曲线C:mx2+ny2=1.(  )
A.若m>n>0,则C是椭圆,其焦点在y轴上
B.若m>n>0,则C是椭圆,其焦点在x轴上
C.若m=n>0,则C是圆,其半径为
D.若m=0,n>0,则C是两条直线
解析:选AD ∵mx2+ny2=1,∴+=1,若m>n>0,∴0<<,∴C是椭圆,且焦点在y轴上,故A正确,B错误.若m=n>0,则x2+y2=,C是圆,半径为,C错误.若m=0,n>0,∴y2=,∴y=±,则C是两条直线,D正确.故选A、D.
2.(2019·北京高考)已知椭圆+=1(a>b>0)的离心率为,则(  )
A.a2=2b2        B.3a2=4b2
C.a=2b D.3a=4b
解析:选B 因为椭圆的离心率e==,
所以a2=4c2.又a2=b2+c2,所以3a2=4b2.
3.已知焦点在y轴上的椭圆 +=1的长轴长为8,则m=(  )
A.4 B.8
C.16 D.18
解析:选C 椭圆的焦点在y轴上,则m=a2.由长轴长2a=8得a=4,所以m=16.故选C.
4.已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,过F2的直线l交C于A,B两点,若△AF1B的周长为4,则C的方程为(  )
A.+=1 B.+y2=1
C.+=1 D.+=1
解析:选A ∵△AF1B的周长为4,
∴由椭圆的定义可知4a=4,
∴a=,∵e==,∴c=1,
∴b2=a2-c2=2,∴C的方程为+=1,故选A.
5.(2021年1月新高考八省联考卷)椭圆+=1(m>0)的焦点为F1,F2,上顶点为A,若∠F1AF2=,则m=(  )
A.1 B.
C. D.2
解析:选C ∵c==1,b=m,由∠F1AF2=,得∠F1AO=,
∴tan∠F1AO==,解得m=,故选C.
6.已知F1,F2是椭圆C的两个焦点,P是C上的一点.若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为(  )
A.1- B.2-
C. D.-1
解析:选D 由题设知∠F1PF2=90°,∠PF2F1=60°,|F1F2|=2c,所以|PF2|=c,|PF1|=c.由椭圆的定义得|PF1|+|PF2|=2a,即c+c=2a,所以(+1)c=2a,故椭圆C的离心率e===-1.故选D.
二、综合练——练思维敏锐度
1.椭圆以x轴和y轴为对称轴,经过点(2,0),长轴长是短轴长的2倍,则椭圆的标准方程为(  )
A.+y2=1 B.+=1
C.+y2=1或+=1 D.+y2=1或+x2=1
解析:选C 由题意知,椭圆的长轴长是短轴长的2倍,即a=2b.因为椭圆经过点(2,0),所以若焦点在x轴上,则a=2,b=1,椭圆的标准方程为+y2=1;若焦点在y轴上,则a=4,b=2,椭圆的标准方程为+=1,故选C.
2.设F1,F2分别是椭圆+=1的左、右焦点,P为椭圆上一点,M是F1P的中点,|OM|=3,则
P点到椭圆左焦点的距离为(  )
A.4 B.3
C.2 D.5
解析:选A 连接PF2,由题意知,a=5,在△PF1F2中,|OM|=|PF2|=3,∴|PF2|=6,∴|PF1|=2a-|PF2|=10-6=4.故选A.
3.与椭圆9x2+4y2=36有相同焦点,且短轴长为2的椭圆的标准方程为(  )
A.+=1 B.x2+=1
C.+y2=1 D.+=1
解析:选B 椭圆9x2+4y2=36可化为+=1,可知焦点在y轴上,焦点坐标为(0,±),
故可设所求椭圆方程为+=1(a>b>0),则c=.
又2b=2,即b=1,所以a2=b2+c2=6,
则所求椭圆的标准方程为x2+=1.
4.直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为(  )
A. B.
C. D.
解析:选B 不妨设直线l经过椭圆的一个顶点B(0,b)和一个焦点F(c,0),则直线l的方程为+=1,即bx+cy-bc=0.由题意知=×2b,解得=,即e=.故选B.
5.(多选)设椭圆+=1的右焦点为F,直线y=m(0<m<)与椭圆交于A,B两点,则下述结论正确的是(  )
A.|AF|+|BF|为定值
B.△ABF的周长的取值范围是[6,12]
C.当m=时,△ABF为直角三角形
D.当m=1时,△ABF的面积为
解析:选AD 设椭圆的左焦点为F′,则|AF′|=|BF|,
∴|AF|+|BF|=|AF|+|AF′|=6为定值,A正确;
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档