下载此文档

人教专题8.2 空间几何体的表面积和体积 2022年高考数学一轮复习讲练测(新教材新高考)(讲)解析版.docx


高中 高三 上学期 数学 人教版

1340阅读234下载21页992 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教专题8.2 空间几何体的表面积和体积 2022年高考数学一轮复习讲练测(新教材新高考)(讲)解析版.docx
文档介绍:
专题8.2 空间几何体的表面积和体积
新课程考试要求
1.理解三视图和直观图间的关系,掌握三视图所表示的空间几何体.
2.会计算柱、锥、台、球的表面积和体积.
核心素养
本节涉及的数学核心素养:数学运算、逻辑推理、直观想象等.
考向预测
(1)以结合三视图、几何体的结构特征考查几何体的面积体积计算为主,题型基本稳定为选择题或填空题,难度中等以下;也有几何体的面积或体积在解答题中与平行关系、垂直关系等相结合考查的情况.
(2)与立体几何相关的“数学文化”等相结合,考查数学应用.
(3)几何体的表面积与体积与三视图结合是主要命题形式.有时作为解答题的一个构成部分考查几何体的表面积与体积,有时结合面积、体积的计算考查等积变换等转化思想.
【知识清单】
知识点1.几何体的表面积
圆柱的侧面积
圆柱的表面积
圆锥的侧面积
圆锥的表面积
圆台的侧面积
圆台的表面积
球体的表面积
柱体、锥体、台体的侧面积,就是各个侧面面积之和;表面积是各个面的面积之和,即侧面积与底面积之和.
把柱体、锥体、台体的面展开成一个平面图形,称为它的展开图,圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形它的表面积就是展开图的面积.
知识点2.几何体的体积
圆柱的体积
圆锥的体积
圆台的体积
球体的体积
正方体的体积
正方体的体积
【考点分类剖析】
考点一 :几何体的面积
【典例1】(2021·全国高考真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为的球,其上点A的纬度是指与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为,记卫星信号覆盖地球表面的表面积为(单位:),则S占地球表面积的百分比约为( )
A.26% B.34% C.42% D.50%
【答案】C
【解析】
由题意结合所给的表面积公式和球的表面积公式整理计算即可求得最终结果.
【详解】
由题意可得,S占地球表面积的百分比约为:
.
故选:C.
【典例2】(2021·全国高考真题(文))已知一个圆锥的底面半径为6,其体积为则该圆锥的侧面积为________.
【答案】
【解析】
利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案.
【详解】



∴.
故答案为:.
【规律方法】
几类空间几何体表面积的求法
(1)多面体:其表面积是各个面的面积之和.
(2)旋转体:其表面积等于侧面面积与底面面积的和.
(3)简单组合体:应搞清各构成部分,并注意重合部分的删、补.
(4)若以三视图形式给出,解题的关键是根据三视图,想象出原几何体及几何体中各元素间的位置关系及数量关系.
【变式探究】
1.(2020·全国高考真题(理))已知为球的球面上的三个点,⊙为的外接圆,若⊙的面积为,,则球的表面积为( )
A. B. C. D.
【答案】A
【解析】
设圆半径为,球的半径为,依题意,
得,为等边三角形,
由正弦定理可得,
,根据球的截面性质平面,

球的表面积.
故选:A
2.(2020·北京高考真题)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ).
A. B. C. D.
【答案】D
【解析】
由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:.
故选:D.
【总结提升】
计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.
考点二 :几何体的体积
【典例3】(2021·天津高考真题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为,两个圆锥的高之比为,则这两个圆锥的体积之和为( )
A. B. C. D.
【答案】B
【解析】
作出图形,计算球体的半径,可计算得出两圆锥的高,利用三角形相似计算出圆锥的底面圆半径,再利用锥体体积公式可求得结果.
【详解】
如下图所示,设两个圆锥的底面圆圆心为点,
设圆锥和圆锥的高之比为,即,
设球的半径为,则,可得,所以,,
所以,,,
,则,所以,,
又因为,所以,,
所以,,,
因此,这两个圆锥的体积之和为.
故选:B.
【典例4】(2018·全国高
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档