十字相乘法及分组分解法(基础)
【学****目标】
1. 熟练掌握首项系数为1的形如型的二次三项式的因式分解.
2. 基础较好的同学可进一步掌握首项系数非1的简单的整系数二次三项式的因式分解.
3. 对于再学有余力的学生可进一步掌握分数系数;实数系数;字母系数的二次三项式的因式分解.(但应控制好难度)
4. 掌握好简单的分组分解法.
【要点梳理】
要点一、十字相乘法
利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.
对于二次三项式,若存在 ,则
要点诠释:(1)在对分解因式时,要先从常数项的正、负入手,若,则同号(若,则异号),然后依据一次项系数的正负再确定的符号
(2)若中的为整数时,要先将分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于,直到凑对为止.
要点二、首项系数不为1的十字相乘法
在二次三项式(≠0)中,如果二次项系数可以分解成两个因数之积,即,常数项可以分解成两个因数之积,即,把排列如下:
按斜线交叉相乘,再相加,得到,若它正好等于二次三项式的一次项系数,即,那么二次三项式就可以分解为两个因式与之积,即.
要点诠释:(1)分解思路为“看两端,凑中间”
(2)二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.
要点三、分组分解法
对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.
要点诠释:分组分解法分解因式常用的思路有:
方法
分类
分组方法
特点
分组分解法
四项
二项、二项
①按字母分组②按系数分组
③符合公式的两项分组
三项、一项
先完全平方公式后平方差公式
五项
三项、二项
各组之间有公因式
六项
三项、三项
二项、二项、二项
各组之间有公因式
三项、二项、一项
可化为二次三项式
要点四:添、拆项法
把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、公式法或分组分解法进行分解.要注意,必须在与原多项式相等的原则下进行变形.
添、拆项法分解因式需要一定的技巧性,在仔细观察题目后可先尝试进行添、拆项,在反复尝试中熟练掌握技巧和方法.
【典型例题】
类型一、十字相乘法
1、将下列各式分解因式:
(1); (2); (3)
【答案与解析】
解:(1)因为
所以:原式=
(2)因为
所以:原式=
(3)
【总结升华】常数项为正,分解的两个数同号;常数项为负,分解的两个数异号. 二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.
举一反三:
【变式1】分解因式:(1); (2); (3)
【答案】
解:(1)
(2)
(3)
【变式2】(2019秋·闵行区期末)因式分解:.
【答案】解:
=
=.
2、将下列各式分解因式:
(1); (2)
(3); (4).
【思路点拨】(3)题可看成常数项,.(4)题可将看成一个整体来分解因式.
【答案与解析】
解:(1);
(2).
(3);
(4)因为
所以:原式
【总结升华】十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.注意观察式子结构,能够看作整体的看作整体.
举一反三:
【变式】将下列各式分解因式:
(1); (2);
(3); (4).
【答案】
解: (1);
(2);
(3);
(4).
3、将下列各式分解因式:
(1);(2)
【答案与解析】
解:(1)因为
所以:原式=
(2)因为
所以:原式=
【总结升华】十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.
举一反三:
【变式】分解因式:(1);(2);(3);
【答案】
解:(1);
(2);
(3).
类型二、分组分解法
4、(2019春•重庆校级期中)先