下载此文档

苏科版八年级第二章《轴对称图形》典型题分类解析 (新版)苏科.zip


初中 八年级 上学期 数学 苏科版

1340阅读234下载4页83 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
文档介绍:
第二章 轴对称图形
1.【问题情境】张老师给爱好学****的小军和小俊提出这样一个问题:如图1,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.
小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得.PD+PE=CF.
小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.
【变式探究】如图3,当点P在BC延长线上时,其余条件不变,求证:PD-PE=CF;请运用上述解答中所积累的经验和方法完成下列两题:
【结论运用】如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C'处,点P为折痕EF上的任一点,过点P作PG⊥BE,PH⊥BC,垂足分别为G,H,若AD=8,CF=3,求PG+PH的值;
考点 四边形综合题;全等三角形的判定与性质;等腰三角形的判定与性质;直角三角形斜边上的中线;勾股定理
专题 压轴题 探究型
分析 【问题情境】如下图②,按照小军、小俊的证明思路即可解决问题.
【变式探究】如下图③,借鉴小军、小俊的证明思路即可解决问题.
【结论运用】易证BE=BF,过点E作EQ⊥BF,垂足为Q,如下图④,利用问题情境中的结论可得PG+PH=EQ,易证EQ=DC,BF=DF,只需求出BF即可.
【迁移拓展】由条件AD·CE=DE·BC联想到三角形相似,从而得到∠A=∠ABC,进而补全等腰三角形,△DEM与△CEN的周长之和就可转化为AB+BH,而BH是△ADB的边AD上的高,只需利用勾股定理建立方程,求出DH,再求出BH,就可解决问题.
解答 【问题情境】证明:(方法1)连接AP,如图②∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ABP+S△ACP,∴AB·CF=AB·PD+AC·PE.∵AB=AC,∴CF=PD+PE.(方法2) 过点P
作PG⊥CF,垂足为G,如图②.∵PD⊥AB,CF⊥AB,PG⊥FC,∴∠CFD=∠FDG=∠FGP=90°.∴四边形PDFG是矩形.∴DP=FG,∠DPG=90°.∴∠CGP=90°.∵PE⊥AC,∴∠CEP=90°.∴∠PGC=∠CEP. ∵∠BDP=∠DPG=90°.∴PG∥AB.∴∠GPC=∠B.∵AB=AC,∠B=∠ACB.∴∠GPC=∠ECP.在△PGC和△CEP中,∴△PGC≌△CEP.∴CG=PE.∴CF=CG +FG=PE+PD.
【变式探究】证明:(方法1)连接AP,如图③.∵PD⊥AB,PE⊥AC,CF⊥AB,且
S△ABC=S△ABP-S△ACP,∴AB·CF=AB·PD-AC·PE.∵AB=AC,∴CF=PD-PE.(方法2) 过点C作CG⊥DP,垂足为G,如图③.∵PD⊥AB,CF⊥AB,CG⊥DP,∴∠CFD=∠FDG=∠DGC=90°.∴四边形CFDG是矩形.∴CF=GD,∠DGC=90°.∴∠CGP=90°.∵PE⊥AC,∴∠CEP=90°.∴∠CGP=∠CEP.∵CG⊥DP,AB⊥PD.∴∠CGP=∠BDP=90°, ∴CG∥AB.∴∠GCP=∠B.∵AB=AC.∴∠B=∠ACB.∵∠ACB=
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档