人教版 九年级数学上册 23.1 图形的旋转 同步课时训练
一、选择题
1. 如图所示,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心是 ( )
A.点A B.点B
C.点C D.点D
2. 把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为 ( )
A.30° B.90° C.120° D.180°
3. 如图,将线段AB先向右平移5个单位长度,再将所得线段绕原点顺时针旋转90°,得到线段A′B′,则点B的对应点B′的坐标是( )
A.(-4,1) B.(-1,2)
C.(4,-1) D.(1,-2)
4. 如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是( )
A.AC=AD B.AB⊥EB
C.BC=DE D.∠A=∠EBC
5. 如图,在平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B′的坐标是( )
图7-ZT-1
A.(-1,2+) B.(-,3)
C.(-,2+) D.(-3,)
6. 如图,Rt△OCB的斜边在y轴上,OC=,含30°角的顶点与原点重合,直角顶点C在第二象限,将Rt△OCB绕原点顺时针旋转120°后得到△OC′B′,则点B的对应点B′的坐标是( )
A.(,-1) B.(1,-)
C.(2,0) D.(,0)
7. 如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为( )
A.90°-α B.α C.180°-α D.2α
8. 2019·河南 如图,在△OAB中,顶点O(0,0),A(-3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为( )
A.(10,3) B.(-3,10) C.(10,-3) D.(3,-10)
二、填空题
9. 如图,△ABC,△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2 .将△BDE绕点B逆时针旋转后得△BD′E′,当点E′恰好落在线段AD′上时,CE′=________.
10. 如图,在正方形网格中,格点△ABC绕某点顺时针旋转角α(0<α<180°)得到格点△A1B1C1,点A与点A1,点B与点B1,点C与点C1是对应点,则α=________°.
11. 如图,在平面直角坐标系中,Rt△ABC的直角顶点C的坐标为(1,0),点A在x轴正半轴上,且AC=2.将△ABC先绕点C逆时针旋转90°,再向左平移3个单位长度,则变化后点A的对应点的坐标为________.
12. 如图所示,△ABC的顶点都在网格线的交点(格点)上,如果将△ABC绕点C逆时针旋转90°,那么点B的对应点B′的坐标是________.
13. 把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的解析式为_______.
14. 如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为________.
15. 如图,等边三角形ABC内有一点P,分别连接AP,BP,CP,若AP=6,BP=8,CP=10,则S△ABP+S△BPC=________.
16. 如图,AB⊥y轴,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=-x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=-x上,依次进行下去……若点B的坐标是(0,1),则点O12的纵坐标为________.
三、作图题
17. 图是由边长为1的小正方形组成的8×4的网格,每个小正方形的顶点叫做格点.点
A,B,C,D均在格点上,在网格中将点D按下列步骤移动:
第一步:点D绕点A顺时针旋转180°得到点D1;
第二步:点D1绕点B顺时针旋转90°得到点D2;
第三步:点D2绕点C顺时针旋转90°回到点D.
(1)请用圆规画