下载此文档

人教版九上23.1.2 图形的旋转达标测试(解析版).zip


初中 九年级 上学期 数学 人教版

1340阅读234下载15页145 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
文档介绍:
《23.1.2 图形的旋转》
 
一、选择题
1.在图形旋转中,下列说法错误的是(  )
A.图形上的每一点到旋转中心的距离相等
B.图形上的每一点转动的角度相同
C.图形上可能存在不动点
D.图形上任意两点的连线与其对应两点的连线相等
2.下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是(  )
A. B. C. D.
3.如图所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是(  )
A.60° B.90° C.72° D.120°
4.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)(  )
A.左上角的梅花只需沿对角线平移即可
B.右上角的梅花需先沿对角线平移后,再顺时针旋转45°
C.右下角的梅花需先沿对角线平移后,再顺时针旋转180
D.左下角的梅花需先沿对角线平移后,再顺时针旋转90°
5.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,则旋转角等于(  )
A.50° B.210° C.50°或210° D.130°
 
二、填空题
6.在图形的平移、旋转、轴对称变换中,其相同的性质是______.
7.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是______,它们之间的关系是______,其中BD=______.
8.如图,将△OAB绕点O按逆时针方面旋转至△0A′B′,使点B恰好落在边A′B′上.已知AB=4cm,BB′=1cm,则A′B长是______cm.
9.如图,在平面直角坐标系中,点A的坐标为(1,4),将线段OA绕点O顺时针旋转90°得到线段OA′,则点A′的坐标是______.
10.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+DF与EF的关系是______.
11.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①,②,③,④…,则三角形⑩的直角顶点的坐标为______.
 
三、综合提高题
12.观察下列图形,它可以看作是什么“基本图形”通过怎样的旋转而得到的?
13.如图:若∠AOD=∠BOC=60°,A、O、C三点在同一条线上,△AOB与△COD是能够重合的图形.求:
(1)旋转中心;
(2)旋转角度数;
(3)图中经过旋转后能重合的三角形共有几对?若A、O、C三点不共线,结论还成立吗?为什么?
(4)求当△BOC为等腰直角三角形时的旋转角度;
(5)若∠A=15°,则求当A、C、B在同一条线上时的旋转角度.
14.作图:
(1)如图甲,以点O为中心,把点P顺时针旋转45°.
(2)如图乙,以点O为中心,把线段AB逆时针旋转90°.
(3)如图丙,以点O为中心,把△ABC顺时针旋转120°.
(4)如图丁,以点B为中心,把△ABC旋转180°.
15.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L,M,D在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.
16.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=x.
(1)求x的取值范围;
(2)若△ABC为直角三角形,求x的值.
17.如图在Rt△OAB中,∠OAB=90°,OA=AB=6.
(1)请你画出将△OAB绕点O沿逆时针方向旋转90°,得到的△OA1B1;
(2)线段OA1的长度是______,∠AOB1的度数是______;
(3)连接AA1,求证:四边形OAA1B1是平行四边形.
 
《23.1.2 图形的旋转》
参考答案与试题解析
 
一、选择题
1.在图形旋转中,下列说法错误的是(  )
A.图形上的每一点到旋转中心的距离相等
B.图形上的每一点转动的角度相同
C.图形上可能存在不动点
D.图形上任意两点的连线与其对应两点的连线相等
【解答】解:A、在图形旋转中,根据旋转的性质,图形上对应点到旋转中心的距离相等,故本选项错误;
B、图形上的每一点转动的角度都等于旋转角,正确;
C、以图形上一点为旋转中心,则这个点不动,正确;
D、旋转前后两个图形全等,则图形上任意两点的
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档