第2课时 相似三角形的性质及其应用举例
1.已知平行四边形ABCD与平行四边形A′B′C′D′相似,AB=3,对应边A′B′=4,若平行四边形ABCD的面积为18,则平行四边形A′B′C′D′的面积为( )
A. B. C.24 D.32
2.若把△ABC的各边长分别扩大为原来的5倍,得到△A′B′C′,则下列结论不可能成立的是( )
A.△ABC∽△A′B′C′
B.△ABC与△A′B′C′的相似比为
C.△ABC与△A′B′C′的各对应角相等
D.△ABC与△A′B′C′的相似比为
3.如图27224,球从A处射出,经球台边挡板CD反射到B,已知AC=10 cm,BD=15 cm,CD=50 cm,则点E距离点C( )
图27224
A.40 cm B.30 cm C.20 cm D.10 cm
4.已知△ABC和△DEF相似且对应中线的比为3∶4,则△ABC和△DEF的周长比为____________.
5.高为3米的木箱在地面上的影长为12米,此时测得一建筑物在水面上的影长为36米,则该建筑物的高度为______米.
6.如图27225,在等腰梯形ABCD中,AD∥CB,且AD=BC,E为AD上一点,AC与BE交于点F,若AE∶DE=2∶1,则=________.
图27225
7.如图27226,直立在B处的标杆AB=2.4 m,直立在F处的观测者从E处看到标杆顶A、树顶C在同一条直线上(点F,B,D也在同一条直线上).已知BD=8 m,FB=2.5 m,人高EF=1.5 m,求树高CD.
图27226
8.如图27227是测量旗杆的方法,已知AB是标杆,BC表示AB在太阳光下的影子,下列叙述错误的是( )
图27227
A.可以利用在同一时刻,不同物体与其影长的比相等来计算旗杆的高
B.只需测量出标杆和旗杆的影长就可计算出旗杆的高
C.可以利用△ABC∽△EDB,来计算旗杆的高
D.需要测量出AB,BC和DB的长,才能计算出旗杆的高
9.如图27228,在▱ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=
CD.
(1)求证:△ABF∽△CEB;
(2)若△DEF的面积为2,求▱ABCD的面积.
图27228
10.(2011年广东中考改编)如图27229(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1;
(1)取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图27229(2)中阴影部分,求正六角星形A1F1B1D1C1E1的面积;
(2)取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图27229(3)中阴影部分,求正六角星形A2F2B2D2C2E2的面积.
(3) 取△A2B2C2和△D2E2F2各边中点,连接成正六角星形A3F3B3D3C3E3,依此法进行下去,试推测正六角星形AnFnBnDnCnEn