周周测一(2010年第一周)
B
O
A
·
x
y
第28题图
1、(2009广西贺州).(本题满分10分) 如图,抛物线的顶点为A,与y 轴交于点B.
(1)求点A、点B的坐标.
(2)若点P是x轴上任意一点,求证:.
(3)当最大时,求点P的坐标.
解:(1)抛物线与y轴的交于点B,
令x=0得y=2.
B
O
A
·
x
y
第(1)证明:∵四边形BCGF和CDHN都是正方形,
又∵点N与点G重合,点M与点C重合,
∴FB = BM = MG = MD = DH,∠FBM =∠MDH = 90°.
∴△FBM ≌ △MDH.
∴FM = MH.
∵∠FMB =∠DMH = 45°,∴∠FMH = 90°.∴FM⊥HM.
(2)证明:连接MB、MD,如图2,设FM与AC交于点P.
∵B、D、M分别是AC、CE、AE的中点,
∴MD∥BC,且MD = BC = BF;MB∥CD,
且MB=CD=DH.
∴四边形BCDM是平行四边形.
∴ ∠CBM =∠CDM.
又∵∠FBP =∠HDC,∴∠FBM =∠MDH.
∴△FBM ≌ △MDH.
∴FM = MH,
且∠MFB =∠HMD.
∴∠FMH =∠FMD-∠HMD =∠APM-∠MFB =∠FBP = 90°.
∴△FMH是等腰直角三角形.
(3)是.
25.解:(1)0 ,3.
(2)由题意,得
, ∴.
,∴.
(3)由题意,得 .
整理,得 .
由题意,得
解得 x≤90.
【注:事实上,0≤x≤90 且x是6的整数倍】
由一次函数的性质可知,当x=90时,Q最小.
此时按三种裁法分别裁90张、75张、0张.
26.解:(1)1,;
(2)作QF⊥AC于点F,如图3, AQ = CP= t,∴.
由△AQF∽△ABC,,
得.∴.
∴,
即.
(3)能.
①当DE∥QB时,如图4.
∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.
此时∠AQP=90°.
由△APQ ∽△ABC,得,
即. 解得.
②如图5,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.
此时∠APQ =90°.
由△AQP ∽△ABC,得 ,
即. 解得.
(4)或.
【注:①点P由C向A运动,DE经过点C.
方法一、连接QC,作QG⊥BC于点G,如图6.
,.
由,得,解得.
方法二、由,得,进而可得
,得,∴.∴.
②点P由A向C运动,DE经过点C,如图7.
,】
28题图
P
H
∴B(0,2) 1分
∵
∴A(—2,3) 3分
(2)当点P是 AB的延长线与x轴交点时,
. 5分
当点P在x轴上又异于AB的延长线与x轴的交点时,
在点P、A、B构成的三角形中,.
综合上述: ……… 7分
(3)作直线AB交x轴于点P,由(2)可知:当PA—PB最大时,点P是所求的点 8分
作AH⊥OP于H.
∵BO⊥OP,
∴△BOP∽△AHP
∴ 9分
由(1)