2015-2016学年江苏省泰州市泰兴一中高二(下)第二次段考数学试卷(文科)
一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题纸相应位置上.
1.已知全集U={0,1,2,3},集合A={0,1},B={1,2,3},则(∁UA)∩B= .
2.已知幂函数f(x)=k•xα(k,α∈R)的图象过点(,),则k+α= .
3.某学校高一、高二、高三年级的学生人数之比为4:3:3,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为80的样本,则应从高一抽取的学生人数为 名.
4.从甲、乙、丙、丁4位同学中随机选出2名代表参加学校会议,则甲被选中的概率是 .
5.“α=”是“tanα=1”的 条件.(填“充分不必要”、“必要不充分”、“充要”或“既
不充分也不必要”)
6.如图是一个算法流程图,则输出S的值是 .
7.函数f(x)=ln(x2﹣3x+2)的单调减区间为 .
8.由命题“存在x∈R,使x2+2x+m≤0”是假命题,求得m的取值范围是(a,+∞),则实数a的值是 .
9.定义在R上的函数f(x),对任意x∈R都有f(x)•f(x+1)=1,当x∈(﹣2,0)时,f(x)=4x,则f=x2﹣3x+a,若函数f(x)在区间(1,3)内有零点,则实数a的取值范围为 .
11.若f(x)=是R上的单调函数,则实数a的取值范围为 .
12.已知f(x)是定义在R上的偶函数,且对于任意的x∈[0,+∞),满足f(x+2)=f(x),若当x∈[0,2)时,f(x)=|x2﹣x﹣1|,则函数y=f(x)﹣1在区间[﹣2,4]上的零点个数为 .
13.已知函数当t∈[0,1]时,f(f(t))∈[0,1],则实数t的取值范围是 .
14.已知f(x)=,a∈R,对任意非零实数x1,存在唯一的非零实数x2(x1≠x2),使得f(x1)=f(x2)成立,则实数k的取值范围是 .
二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
15.某高校从参加今年自主招生考试的学生中随机抽取容量为50的学生成绩样本,得频率分布表如下:
组号
分组
频数
频率
第一组
[230,235)
8
0.16
第二组
[235,240)
①
0.24
第三组
[240,245)
15
②
第四组
[245,250)
10
0.20
第五组
[250,255]
5
0.10
合 计
50
1.00
(1)写出表中①②位置的数据;
(2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数;
(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第四组的概率.
16.已知命题:“∃x∈[﹣1,1],使等式m=x2﹣x成立”是真命题.
(1)求实数m的取值集合M;
(2)设不等式(x﹣a)[x﹣(2﹣a)]<0的解集为N,若N⊆M,求a的取值范围.
17.已知二次函数f(x)有两个零点0和﹣2,且f(x)最小值是﹣1,函数g(x)与f(x)的图象关于原点对称.
(1)求f(x)和g(x)的解析式;
(2)若h(x)=f(x)﹣λg(x)在区间[﹣1,1]上是增函数,求实数λ的取值范围.
18.某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.
(1)分别用x表示y和S的函数关系式,并给出定义域;
(2)怎样设计能使S取得最大值,并求出最大值.
19.已知函数f(x)=|x﹣m|和函数g(x)=x|x﹣m|+m2﹣7m.
(1)若方程f(x)=|m|在[﹣4,+∞)上有两个不同的解,求实数m的取值范围;
(2)若对任意x1∈(﹣∞,4],均存在x2∈[3,+∞),使得f(x1)>g(x2)成立,求实数m的取值范围.
20.对于函数f(x),若存在实数对(a,b),使得等式f(a+x)•f(a﹣x)=b对定义域中的每一个x都成立,则称函数f(x)是“(a,b)型函数”.
(1)判断函数f(x)=4x是否为“(a,b)型函数”,并说明理由;
(2)已知函数g(x)是“(1,4)型函数”,且当x∈[0,1