下载此文档

【名师一号】高二数学(人教A版)必修5第一章 解三角形 测试题(含详解).zip


高中 高二 下学期 数学 人教版

1340阅读234下载11页28 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
文档介绍:
第一章测试
(时间:120分钟 满分:150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.在△ABC中,AB=5,BC=6,AC=8,则△ABC的形状是(  )
A.锐角三角形 B.直角三角形
C.钝角三角形 D.非钝角三角形
解析 最大边AC所对角为B,则cosB==-<0,∴B为钝角.
答案 C
2.在△ABC中,已知a=1,b=,A=30°,B为锐角,那么A,B,C的大小关系为(  )
A.A>B>C B.B>A>C
C.C>B>A D.C>A>B
解析 由正弦定理=,∴sinB==.
∵B为锐角,∴B=60°,则C=90°,故C>B>A.
答案 C
3.在△ABC中,已知a=8,B=60°,C=75°,则b等于(  )
A.4 B.4
C.4 D.
解析 由A+B+C=180°,可求得A=45°,由正弦定理,得b=
===4.
答案 C
4.在△ABC中,A=60°,a=3,则等于(  )
A. B.
C. D.2
解析 利用正弦定理及比例性质,得
====2.
答案 D
5.若三角形三边长之比是1::2,则其所对角之比是(  )
A.1:2:3 B.1: :2
C.1: : D. : :2
解析 设三边长分别为a,a,2a,设最大角为A,则cosA==0,
∴A=90°.
设最小角为B,则cosB==,
∴B=30°,∴C=60°.
因此三角之比为1:2:3.
答案 A
6.在△ABC中,若a=6,b=9,A=45°,则此三角形有(  )
A.无解 B.一解
C.两解 D.解的个数不确定
解析 由=,得sinB===>1.
∴此三角形无解.
答案 A
7.已知△ABC的外接圆半径为R,且2R(sin2A-sin2C)=(a-b)sinB(其中a,b分别为A,B的对边),那么角C的大小为(  )
A.30° B.45°
C.60° D.90°
解析 根据正弦定理,原式可化为
2R=(a-b)·,
∴a2-c2=(a-b)b,∴a2+b2-c2=ab,
∴cosC==,∴C=45°.
答案 B
8.在△ABC中,已知sin2A+sin2B-sinAsinB=sin2C,且满足ab=4,则该三角形的面积为(  )
A.1 B.2
C. D.
解析 由===2R,又sin2A+sin2B-sinAsinB=sin2C,
可得a2+b2-ab=c2.
∴cosC==,∴C=60°,sinC=.
∴S△ABC=absinC=.
答案 D
9.在△ABC中,A=120°,AB=5,BC=7,则的值为(  )
A. B.
C. D.
解析 由余弦定理,得
cosA=,解得AC=3.
由正弦定理==.
答案 D
10.在三角形ABC中,AB=5,AC=3,BC=7,则∠BAC的大小为(  )
A. B.
C. D.
解析 由余弦定理,得cos∠BAC===-,∴∠BAC=.
答案 A
11.有一长为1 km的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要加长(  )
A.0.5 km B.1 km
C.1.5 km D. km
解析 如图,AC=AB·sin20°=sin20°,
BC=AB·cos20°=cos20°,DC==2cos210°,
∴DB=DC-BC=2cos210°-cos20°=1.
答案 B
12.已知△ABC中,A,B,C的对边分别为a,b,c.若a=c=+,且A=75°,则b为(  )
A.2 B.4+2
C.4-2 D.-
解析 在△ABC中,由余弦定理,得a2=b2+c2-2bccosA,∵a=c,∴0=b2-2bccosA=b2-2b(+)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=(-)=(-),∴b2-2b(+)cos75°=b2-2b(+)·(-)=b2-2b=0,解得b=2,或b=0(舍去).故选A.
答案 A
二、填空题(本大题共5小题,每小题4分,共20分.把答案填在题中横线上)
13.在△ABC中,A=60°,C=45°,b=4,则此三角形的最小边是____________.
解析 由A+B+C=180°,得B=75°,∴c为最小边,由正弦定理,知
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档