下载此文档

专题16三角形及全等三角形(共40题)-2021年中考数学真题分项汇编(解析版)【人教版】(第01期).docx


初中 八年级 上学期 数学 人教版

1340阅读234下载50页2.06 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
专题16三角形及全等三角形(共40题)-2021年中考数学真题分项汇编(解析版)【人教版】(第01期).docx
文档介绍:
2021年中考数学真题分项汇编【全国通用】(第01期)
专题16三角形及全等三角形(共40题)
姓名:__________________ 班级:______________ 得分:_________________
一、单选题
1.(2021·湖南岳阳市·中考真题)下列命题是真命题的是( )
A.五边形的内角和是 B.三角形的任意两边之和大于第三边
C.内错角相等 D.三角形的重心是这个三角形的三条角平分线的交点
【答案】B
【分析】
根据相关概念逐项分析即可.
【详解】
A、五边形的内角和是,故原命题为假命题,不符合题意;
B、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;
C、两直线平行,内错角相等,故原命题为假命题,不符合题意;
D、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;
故选:B.
【点睛】
本题考查命题判断,涉及多边形的内角和,三角形的三边关系,平行线的性质,以及三角形的重心等,熟记基本性质和定理是解题关键.
2.(2021·山东临沂市·中考真题)如图,在中,,平分,则的度数为( )
A. B. C. D.
【答案】B
【分析】
根据平行线的性质得到∠ABC=∠BCD,再根据角平分线的定义得到∠ABC=∠BCD,再利用三角形外角的性质计算即可.
【详解】
解:∵AB∥CD,
∴∠ABC=∠BCD,
∵CB平分∠DCE,
∴∠BCE=∠BCD,
∴∠BCE=∠ABC,
∵∠AEC=∠BCE+∠ABC=40°,
∴∠ABC=20°,
故选B.
【点睛】
本题考查了平行线的性质,角平分线的定义和外角的性质,掌握平行线的性质:两直线平行,内错角相等是解题的关键.
3.(2021·陕西中考真题)如图,点D、E分别在线段、上,连接、.若,,,则的大小为( )
A.60° B.70° C.75° D.85°
【答案】B
【分析】
由题意易得,然后根据三角形外角的性质可进行求解.
【详解】
解:∵,,
∴在Rt△BEC中,由三角形内角和可得,
∵,
∴;
故选B.
【点睛】
本题主要考查三角形内角和及外角的性质,熟练掌握三角形内角和及外角的性质是解题的关键.
4.(2021·四川乐山市·中考真题)如图,已知直线、、两两相交,且.若,则的度数为( )
A. B. C. D.
【答案】C
【分析】
由垂直的定义可得∠2=90°;根据对顶角相等可得,再根据三角形外角的性质即可求得.
【详解】
∵,
∴∠2=90°;
∵,
∴.
故选C.
【点睛】
本题考查了垂直的定义、对顶角的性质、三角形外角的性质,熟练运用三角形外角的性质是解决问题的关键.
5.(2021·安徽中考真题)两个直角三角板如图摆放,其中,,,AB与DF交于点M.若,则的大小为( )
A. B. C. D.
【答案】C
【分析】
根据,可得再根据三角形内角和即可得出答案.
【详解】
由图可得
∵,


故选:C.
【点睛】
本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键.
6.(2021·江苏扬州市·中考真题)如图,点A、B、C、D、E在同一平面内,连接、、、、,若,则( )
A. B. C. D.
【答案】D
【分析】
连接BD,根据三角形内角和求出∠CBD+∠CDB,再利用四边形内角和减去∠CBD和∠CDB的和,即可得到结果.
【详解】
解:连接BD,∵∠BCD=100°,
∴∠CBD+∠CDB=180°-100°=80°,
∴∠A+∠ABC+∠E+∠CDE=360°-∠CBD-∠CDB=360°-80°=280°,
故选D.
【点睛】
本题考查了三角形内角和,四边形内角和,解题的关键是添加辅助线,构造三角形和四边形.
7.(2021·河北中考真题)定理:三角形的一个外角等于与它不相邻的两个内角的和.
已知:如图,是的外角.
求证:.
下列说法正确的是( )
A.证法1还需证明其他形状的三角形,该定理的证明才完整
B.证法1用严谨的推理证明了该定理
C.证法2用特殊到一般法证明了该定理
D.证法2只要测量够一百个三角形进行验证,就能证明该定理
【答案】B
【分析】
根据三角形的内角和定理与平角的定义可判断A与B,利用理论与实践相结合可判断C
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档