下载此文档

人教版2022年黑龙江省哈尔滨市中考数学真题(解析版).docx


初中 九年级 下学期 数学 人教版

1340阅读234下载28页1.22 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版2022年黑龙江省哈尔滨市中考数学真题(解析版).docx
文档介绍:
哈尔滨市2022年初中升学考试
数学试卷
一、选择题(每小题3分,共计30分)
1. 的相反数是( )
A. B. C. D.
【答案】D
【解析】
【分析】根据相反数的定义选出正确选项.
【详解】解:的相反数是.
故选:D.
【点睛】本题考查相反数的定义,解题关键是掌握相反数的定义.
2. 下列运算一定正确的是( )
A. B. C. D.
【答案】A
【解析】
【分析】根据积的乘方运算、幂的乘方运算、合并同类项运算和同底数幂的乘法运算逐项验证即可得到结论.
【详解】解:A、根据积的乘方运算、幂的乘方运算法则可知,该选项符合题意;
B、根据合并同类项运算可知,该选项不符合题意;
C、根据幂的乘方运算可知,该选项不符合题意;
D、根据同底数幂的乘法运算可知,该选项不符合题意;
故选:A.
【点睛】本题考查整式的运算,涉及到积的乘方运算、幂的乘方运算、合并同类项运算和同底数幂的乘法运算等知识点,熟练掌握相关运算法则是解决问题的关键.
3. 下列图形中既是轴对称图形又是中心对称图形是( )
A. B. C. D.
【答案】B
【解析】
【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.
【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;
B、既是轴对称图形,也是中心对称图形,故此选项符合题意;
C、是轴对称图形,不是中心对称图形,故此选项符合题意;
D、是轴对称图形,不是中心对称图形,故此选项符合题意;
故选B.
【点睛】本题主要考查了中心对称图形和轴对称图形的识别,解题的关键在于能够熟练掌握二者的定义:
4. 六个大小相同的正方体搭成的几何体如图所示,其左视图是( )
A. B. C. D.
【答案】D
【解析】
【分析】根据从左边看得到的图形是左视图,可得答案.
【详解】解:从左边看下面一层是两个小正方形,上面一层左边一个小正方形,
故选:D.
【点睛】本题主要考查左视图,掌握三视图是解题的关键.
5. 抛物线的顶点坐标是( )
A. B. C. D.
【答案】B
【解析】
【分析】根据二次函数的顶点式可得顶点坐标为即可得到结果.
【详解】∵二次函数解析式为 ,
∴顶点坐标为;
故选:B.
【点睛】本题主要考查了二次函数顶点式的顶点坐标的求解,准确理解是解题的关键.
6. 方程的解为( )
A. B. C. D.
【答案】C
【解析】
【分析】把分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】解:
去分母得:,
去括号得:,
移项、合并同类项得:,
解得:x=9,
经检验:x=9是原分式方程的解,
故选:C.
【点睛】本题考查了解分式方程,利用了转化的思想,解题的关键是解分式方程注意要检验,避免出现增根.
7. 如图,是的直径,点P在的延长线上,与相切于点A,连接,若,则的度数为( )
A. B. C. D.
【答案】A
【解析】
【分析】由切线性质得出,根据三角形的内角和是、对顶角相等求出,即可得出答案;
【详解】解:PA与⊙O相切于点A,AD是⊙O的直径,








故选:A.
【点睛】本题考查圆内求角的度数,涉及知识点:切线的性质、对顶角相等、等腰三角形的性质、三角形的内角和是,解题关键根据切线性质推出.
8. 某种商品原来每件售价为150元,经过连续两次降价后,该种商品每件售价为96元,设平均每次降价的百分率为x,根据随意,所列方程正确的是( )
A. B. C. D.
【答案】C
【解析】
【分析】结合题意分析:第一次降价后的价格=原价×(1-降低的百分率),第二次降价后的价格=第一次降价后的价格×(1-降低的百分率),把相关数值代入即可.
【详解】解:设平均每次降价的百分率为x,根据题意可列方程150(1-x)2=96,
故选:C.
【点睛】本题考查了由实际问题抽象出一元二次方程的知识,解题的关键是能够分别表示出两次降价后的售价.
9. 如图,相交于点E,,则的长为( )
A. B. 4 C. D. 6
【答案】C
【解
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档