下载此文档

人教版专题11 函数思想-【口袋书】2020年中考数学背诵手册.docx


初中 八年级 上学期 数学 人教版

1340阅读234下载10页92 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版专题11 函数思想-【口袋书】2020年中考数学背诵手册.docx
文档介绍:
中考数学常见思想方法
专题11 函数思想
专题概述:
数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复****时要注意体会教材例题****题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.
数学思想方法是数学的精髓,是读书由厚到薄的升华,在复****中一定要注重培养在解题中提炼数学思想的****惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复****备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
名词诠释:
函数思想是用运动和变化的观点,去分析和研究数学问题中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决。
所谓函数思想的运用,就是对于一个实际问题或数学问题,构建一个相应的函数,从而更快更好地解决问题。构造函数是函数思想的重要体现,运用函数思想要善于抓住事物在运动过程中那些保持不变的规律和性质。
运用举例:
一.函数思想在几何变换的运用
1.(2019秋•龙泉驿区期末)如图,直线y=kx+b与直线y=2x+6关于y轴对称且交于点A,直线y=2x+6交x轴于点B,直线y=kx+b交x轴于点C,正方形DEFG一边DG在线段BC上,点E在线段AB上,点F在线段AC上,则点G的坐标是 (32,0) .
【点拨】根据轴对称求得直线AC的解析式,再根据正方形的性质以及轴对称的性质设G(m,0),则F(m,2m),代入直线AC的解析式,得到关于m的方程,解得即可.
【详解】解:由直线y=2x+6可知A(0,6),B(﹣3,0),
∵直线y=kx+b与直线y=2x+6关于y轴对称且交于点A,直线y=2x+6交x轴于点B,直线y=kx+b交x轴于点C,
∴直线AC为y=﹣2x+6,
设G(m,0),
∵正方形DEFG一边DG在线段BC上,点E在线段AB上,点F在线段AC上,
∴F(m,2m),
代入y=﹣2x+6得,2m=﹣2m+6,
解得m=32,
∴G的坐标为(32,0),
故答案为(32,0).
2.(2019秋•武侯区期末)如图,将直线OA向上平移3个单位长度,则平移后的直线的表达式为 y=2x+3 .
【点拨】利用待定系数法确定直线OA解析式,然后根据平移规律填空.
【详解】解:设直线OA的解析式为:y=kx,
把(1,2)代入,得k=2,
则直线OA解析式是:y=2x.
将其上平移3个单位长度,则平移后的直线的表达式为:y=2x+3.
故答案是:y=2x+3.
3.(2020•安阳模拟)如图,点A是反比例函数y=kx的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档