下载此文档

人教版专题39三角形(4)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版).doc


初中 九年级 上学期 数学 人教版

1340阅读234下载156页8.58 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版专题39三角形(4)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版).doc
文档介绍:
专题39三角形(4)(全国一年)
学校:___________姓名:___________班级:___________考号:___________
一、填空题
1.(2020·江苏南京?中考真题)如图,线段AB、BC的垂直平分线、相交于点,若39°,则=__________.
【答案】78
【解析】
【分析】
如图,利用线段垂直平分线的性质结合三角形外角性质得到∠AOC=∠2+∠3=2(∠A+∠C),再利用垂直的定义结合三角形外角性质得到∠AOG =51-∠A,∠COF =51-∠C,利用平角的定义得到∠AOG+∠2+∠3+∠COF+∠1=180,计算即可求解.
【详解】
如图,连接BO并延长,
∵、分别是线段AB、BC的垂直平分线,
∴OA=OB,OB=OC,∠ODG=∠OEF=90,
∴∠A=∠ABO,∠C=∠CBO,
∴∠2=2∠A,∠3=2∠C,∠OGD=∠OFE=90-39=51,
∴∠AOC=∠2+∠3=2(∠A+∠C),
∵∠OGD=∠A+∠AOG,∠OFE=∠C+∠COF,
∴∠AOG =51-∠A,∠COF =51-∠C,
而∠AOG+∠2+∠3+∠COF+∠1=180,
∴51-∠A+2∠A+2∠C+51-∠C+39=180,
∴∠A+∠C=39,
∴∠AOC=2(∠A+∠C)=78,
故答案为:78.
【点睛】
本题考查了线段垂直平分线的性质,三角形外角的性质,垂直的定义,平角的定义,注意掌握辅助线的作法,注意掌握整体思想与数形结合思想的应用.
2.(2020·黑龙江牡丹江?中考真题)如图,在中,,M是的中点,点D在上,,,垂足分别为E,F,连接.则下列结论中:①;②;③;④;⑤若平分,则;⑥,正确的有___________.(只填序号)
【答案】①②③④⑤⑥
【解析】
【分析】
证明△BCF≌△CAE,得到BF=CE,可判断①;再证明△BFM≌△CEM,从而判断△EMF为等腰直角三角形,得到EF=EM,可判断③,同时得到∠MEF=∠MFE=45°,可判断②;再证明△DFM≌△NEM,得到△DMN为等腰直角三角形,得到DN=DM,可判断④;根据角平分线的定义可逐步推断出DE=EM,再证明△ADE≌△ACE,得到DE=CE,则有,从而判断⑤;最后证明△CDM∽ADE,得到,结合BM=CM,AE=CF,可判断⑥.
【详解】
解:∵∠ACB=90°,
∴∠BCF+∠ACE=90°,
∵∠BCF+∠CBF=90°,
∴∠ACE=∠CBF,
又∵∠BFD=90°=∠AEC,AC=BC,
∴△BCF≌△CAE(AAS),
∴BF=CE,故①正确;
由全等可得:AE=CF,BF=CE,
∴AE-CE=CF=CE=EF,连接FM,CM,
∵点M是AB中点,
∴CM=AB=BM=AM,CM⊥AB,
在△BDF和△CDM中,∠BFD=∠CMD,∠BDF=∠CDM,
∴∠DBF=∠DCM,又BM=CM,BF=CE,
∴△BFM≌△CEM,
∴FM=EM,∠BMF=∠CME,
∵∠BMC=90°,
∴∠EMF=90°,即△EMF为等腰直角三角形,
∴EF=EM=,故③正确,
∠MEF=∠MFE=45°,∵∠AEC=90°,
∴∠MEF=∠AEM=45°,故②正确,
设AE与CM交于点N,连接DN,
∵∠DMF=∠NME,FM=EM,∠DFM=∠DEM=∠AEM=45°,
∴△DFM≌△NEM,
∴DF=EN,DM=MN,
∴△DMN为等腰直角三角形,
∴DN=DM,而∠DEA=90°,
∴,故④正确;
∵AC=BC,∠ACB=90°,
∴∠CAB=45°,
∵AE平分∠BAC,
∴∠DAE=∠CAE=22.5°,∠ADE=67.5°,
∵∠DEM=45°,
∴∠EMD=67.5°,即DE=EM,
∵AE=AE,∠AED=∠AEC,∠DAE=∠CAE,
∴△ADE≌△ACE,
∴DE=CE,
∵△MEF为等腰直角三角形,
∴EF=,
∴,故⑤正确;
∵∠CDM=∠ADE,∠CMD=∠AED=90°,
∴△CDM∽ADE,
∴,
∵BM=CM,AE=CF,
∴,
∴,故⑥正确;
故答案为:①②③④⑤⑥.
【点睛】
本题考查了全等三角形的判定和性质,相似三角形的判定和性质,等腰直角三角形的判定和性质,等量代换,难度较大,解题的关键是添加辅助线,找到全等三角形说明角相等和线段相等.
3.(2020·黑龙江牡丹江?中考真题)如图,在中,,点E在边上.将沿直线翻折,点A落在点处,连接,交于点F.若,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档