下载此文档

人教版高中数学第5讲 椭 圆.doc


高中 高三 上学期 数学 人教版

1340阅读234下载8页468 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第5讲 椭 圆.doc
文档介绍:
第5讲 椭 圆
一、选择题
1.椭圆+=1的焦距为2,则m的值等于(  )
A.5 B.3 C.5或3 D.8
解析 当m>4时,m-4=1,∴m=5;当0<m<4时,4-m=1,∴m=3.
答案 C
2.“2<m<6”是“方程+=1表示椭圆”的(  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析 若+=1表示椭圆.
则有∴2<m<6且m≠4.
故“2<m<6”是“+=1表示椭圆”的必要不充分条件.
答案 B
3.设椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为(  )
A. B. C. D.
解析 在Rt△PF2F1中,令|PF2|=1,因为∠PF1F2=30°,所以|PF1|=2,|F1F2|=.故e===.故选D.
答案 D
4.(2015·全国Ⅰ卷)已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=(  )
A.3 B.6 C.9 D.12
解析 抛物线C:y2=8x的焦点坐标为(2,0),准线方程为x=-2.从而椭圆E
的半焦距c=2.可设椭圆E的方程为+=1(a>b>0),因为离心率e==,所以a=4,所以b2=a2-c2=12.由题意知|AB|==2×=6.故选B.
答案 B
5.(2016·江西师大附中模拟)椭圆ax2+by2=1(a>0,b>0)与直线y=1-x交于A,B两点,过原点与线段AB中点的直线的斜率为,则的值为(  )
A. B. C. D.
解析 设A(x1,y1),B(x2,y2),
则ax+by=1,ax+by=1,
即ax-ax=-(by-by),=-1,
=-1,∴×(-1)×=-1,
∴=,故选B.
答案 B
二、填空题
6.焦距是8,离心率等于0.8的椭圆的标准方程为________.
解析 由题意知解得
又b2=a2-c2,∴b2=9,∴b=3.
当焦点在x轴上时,椭圆方程为+=1,
当焦点在y轴上时,椭圆方程为+=1.
答案 +=1或+=1
7.(2017·昆明质检)椭圆+=1上的一点P到两焦点的距离的乘积为m,当m取最大值时,点P的坐标是________.
解析 记椭圆的两个焦点分别为F1,F2,有|PF1|+|PF2|=2a=10.
则m=|PF1|·|PF2|≤=25,当且仅当|PF1|=|PF2|=5,即点P位于椭圆的短轴的顶点处时,m取得最大值25.
∴点P的坐标为(-3,0)或(3,0).
答案 (-3,0)或(3,0)
8.(2017·乌鲁木齐调研)已知F1(-c,0),F2(c,0)为椭圆+=1(a>b>0)的两个焦点,P为椭圆上一点,且·=c2,则此椭圆离心率的取值范围是________.
解析 设P(x,y),则·=(-c-x,-y)·(c-x,-y)=x2-c2+y2=c2,①
将y2=b2-x2代入①式解得
x2==,
又x2∈[0,a2],∴2c2≤a2≤3c2,
∴e=∈.
答案 
三、解答题
9.设F1
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档