下载此文档

人教版高中数学第5节 古典概型、概率的基本性质.doc


高中 高三 下学期 数学 人教版

1340阅读234下载14页254 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第5节 古典概型、概率的基本性质.doc
文档介绍:
第5节 古典概型、概率的基本性质
考试要求 1.理解古典概型及其概率计算公式.2.会计算一些随机事件所包含的样本点及事件发生的概率.3.当直接求某一事件的概率较为复杂时,可转化为求几个互斥事件的概率之和或其对立事件的概率.
1.古典概型
具有以下特征的试验叫做古典概型试验,其数学模型称为古典概率模型,简称古典概型.
(1)有限性:样本空间的样本点只有有限个;
(2)等可能性:每个样本点发生的可能性相等.
2.古典概型的概率公式
一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率P(A)==.
其中,n(A)和n(Ω)分别表示事件A和样本空间Ω包含的样本点个数.
3.概率的性质
性质1:对任意的事件A,都有0≤P(A)≤1;
性质2:必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(∅)=0;
性质3:如果事件A与事件B互斥,那么P(A∪B)=P(A)+P(B);
性质4:如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=1-P(B);
性质5:如果A⊆B,那么P(A)≤P(B),由该性质可得,对于任意事件A,因为∅⊆A⊆Ω,所以0≤P(A)≤1.
性质6:设A,B是一个随机试验中的两个事件,有P(A∪B)=P(A)+P(B)-P(A∩B).
概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B=∅,即A,B互斥时,P(A∪B)=P(A)+P(B),此时P(A∩B)=0.
1.思考辨析(在括号内打“√”或“×”)
(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其样本点是“发芽与不发芽”.(  )
(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.(  )
(3)随机模拟方法是以事件发生的频率估计概率.(  )
(4)概率为0的事件一定是不可能事件.(  )
答案 (1)× (2)× (3)√ (4)×
解析 对于(1),发芽与不发芽不一定是等可能,所以(1)不正确;对于(2),三个事件不是等可能,其中“一正一反”应包括正反与反正两个样本点,所以(2)不正确;对于(4),概率为0的事件有可能发生,所以(4)不正确.
2.(易错题)安排甲、乙、丙、丁四人参加周一至周六的公益活动,每天只需一人参加,其中甲参加三天活动,乙、丙、丁每人参加一天,那么甲连续三天参加活动的概率为(  )
A. B. C. D.
答案 B
解析 由题意可得,甲连续三天参加活动的所有情况为:第1~3天,第2~4天,第3~5天,第4~6天,共四种情况,∴所求概率P==.
3.(2022·九江一模)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是(  )
A. B. C. D.
答案 A
解析 在所有重卦中随机取一重卦,其样本点总数n=26=64,恰有3个阳爻的样本点数为C=20,所以在所有重卦中随机取一重卦,该重卦恰有3个阳爻的概率
P==.
4.(2020·全国Ⅰ卷)设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为(  )
A. B. C. D.
答案 A
解析 从O,A,B,C,D这5个点中任取3点,取法有C=10种,其中取到的3点共线的只有{O,A,C},{O,B,D}这2种取法,所以所求概率为=.故选A.
5.(2021·全国甲卷)将4个1和2个0随机排成一行,则2个0不相邻的概率为(  )
A. B. C. D.
答案 C
解析 法一 4个1分别设为1A,1B,1C,1D,2个0分别设为0A,0B,将4个1和2个0随机排成一行有A种排法,将1A,1B,1C,1D排成一行有A种排法,再将0A,0B插空有A种排法,所以2个0不相邻的概率P==.
法二 将4个1和2个0安排在6个位置,则选择2个位置安排0,共有C种排法,其中将4个1排成一行,把2个0插空,即在5个位置中选2个位置安排0,共有C种排法.所以2个0不相邻的概率P==.
6.(易错题)抛掷一枚骰子,记A为事件“出现点数是奇数”,B为事件“出现点数是3的倍数”,则P(A∪B)=________,P(A∩B)=________.
答案  
解析 抛掷一枚骰子,样本空间出现的点数是{1,2,3,4,5,6},
事件A∪B包括出现的点数是{1,3,5,6}这4个样本点,故P(A∪B)=
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档