下载此文档

人教版高中数学第6讲 高效演练分层突破4.doc


高中 高三 下学期 数学 人教版

1340阅读234下载8页243 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第6讲 高效演练分层突破4.doc
文档介绍:
[基础题组练]
1.(2019·高考北京卷)已知双曲线-y2=1(a>0)的离心率是,则a=(  )
A.         B.4
C.2 D.
解析:选D.由双曲线方程-y2=1,
得b2=1,
所以c2=a2+1.
所以5=e2===1+.
结合a>0,解得a=.
故选D.
2.若双曲线C1:-=1与C2:-=1(a>0,b>0)的渐近线相同,且双曲线C2的焦距为4,则b=(  )
A.2 B.4
C.6 D.8
解析:选B.由题意得,=2⇒b=2a,C2的焦距2c=4⇒c==2⇒b=4,故选B.
3.设双曲线x2-=1的两个焦点为F1,F2,P是双曲线上的一点,且|PF1|∶|PF2|=3∶4,则△PF1F2的面积等于(  )
A.10 B.8
C.8 D.16
解析:选C.依题意|F1F2|=6,|PF2|-|PF1|=2,因为|PF1|∶|PF2|=3∶4,所以|PF1|=6,|PF2|=8,所以等腰三角形PF1F2的面积S=×8× =8.
4.(2020·长春市质量监测(一))已知双曲线-=1(a>0,b>0)的两个顶点分别为A,B,点P为双曲线上除A,B外任意一点,且点P与点A,B连线的斜率分别为k1,k2,若k1k2=3,则双曲线的渐近线方程为(  )
A.y=±x B.y=±x
C.y=±x D.y=±2x
解析:选C.设点P(x,y),由题意知k1·k2=·====3,所以其渐近线方程为y=±x,故选C.
5.(多选)(2021·预测)已知F1,F2分别是双曲线C:y2-x2=1的上、下焦点,点P是其中一条渐近线上的一点,且以线段F1F2为直径的圆经过点P,则(  )
A.双曲线C的渐近线方程为y=±x
B.以F1F2为直径的圆的方程为x2+y2=1
C.点P的横坐标为±1
D.△PF1F2的面积为
解析:选ACD.等轴双曲线C:y2-x2=1的渐近线方程为y=±x,故A正确;由双曲线的方程可知|F1F2|=2,所以以F1F2为直径的圆的方程为x2+y2=2,故B错误;点P(x0,y0)在圆x2+y2=2上,不妨设点P(x0,y0)在直线y=x上,所以解得|x0|=1,则点P的横坐标为±1,故C正确;由上述分析可得△PF1F2的面积为×2×1=,故D正确.故选ACD.
6.(2019·高考江苏卷)在平面直角坐标系xOy中,若双曲线x2-=1(b>0)经过点(3,4),则该双曲线的渐近线方程是________.
解析:因为双曲线x2-=1(b>0)经过点(3,4),所以9-=1(b>0),解得b=,即双曲线方程为x2-=1,其渐近线方程为y=±x.
答案:y=±x
7.(2020·云南昆明诊断测试改编)已知点P(1,)在双曲线C:-=1(a>0,b>0)的渐近线上,F为双曲线C的右焦点,O为原点.若∠FPO=90°,则双曲线C的方程为________,其离心率为________.
解析:因为双曲线C:-=1(a>0,b>0)的渐近线方程为y=±x,点P(1,)在渐近线上,所以=.在Rt△OPF中,|OP|==2,∠FOP=60°,所以|OF|=c=4.又c2=a2+b2,所以b=2,a=2,所以双曲线C的方程为-=1,离心率e=
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档