下载此文档

人教高中数学第25讲 三角函数的图像与性质(解析版).docx


高中 高三 上学期 数学 人教版

1340阅读234下载20页910 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学第25讲 三角函数的图像与性质(解析版).docx
文档介绍:
第25讲 三角函数的图像与性质
【基础知识网络图】
应用
三角函数的图象与性质
正弦函数的图象与性质
余弦函数的
图象与性质
正切函数的
图象与性质
【基础知识全通关】
一、正弦函数,余弦函数,正切函数的图象与性质
函数
图象
定义域
值域
最值
当时,;
当时,.
当时,;
当时,.
既无最大值,也无最小值
周期性
最小正周期为
最小正周期为
最小正周期为
奇偶性
,奇函数
,偶函数
,奇函数
单调性
在上是增函数;
在上是减函数.
在上是增函数;
在上是减函数.
在上是增函数.
对称性
对称中心;
对称轴,
既是中心对称图形又是轴对称图形.
对称中心;
对称轴,
既是中心对称图形又是轴对称图形.
对称中心;
无对称轴,
是中心对称图形但不是轴对称图形.
二、函数的图象与性质
1.函数的图象的画法
(1)变换作图法
由函数的图象通过变换得到(A>0,ω>0)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.如下图.

(2)五点作图法
找五个关键点,分别为使y取得最小值、最大值的点和曲线与x轴的交点.其步骤为:
①先确定最小正周期T=,在一个周期内作出图象;
②令,令X分别取0,,,,求出对应的x值,列表如下:
由此可得五个关键点;
③描点画图,再利用函数的周期性把所得简图向左右分别扩展,从而得到的简图.
2.函数(A>0,ω>0)的性质
(1)奇偶性:时,函数为奇函数;时,函数为偶函数.
(2)周期性:存在周期性,其最小正周期为T= .
(3)单调性:根据y=sint和t=的单调性来研究,由得单调增区间;由得单调减区间.
(4)对称性:利用y=sin x的对称中心为求解,令,求得x.
利用y=sin x的对称轴为求解,令,得其对称轴.
3.函数(A>0,ω>0)的物理意义
当函数(A>0,ω>0,)表示一个简谐振动量时,则A叫做振幅,T=叫做周期,f =叫做频率,叫做相位,x=0时的相位叫做初相.
三、三角函数的综合应用
(1)函数,的定义域均为;函数的定义域均为.
(2)函数,的最大值为,最小值为;函数的值域为.
(3)函数,的最小正周期为;函数的最小正周期为.
(4)对于,当且仅当时为奇函数,当且仅当时为偶函数;对于,当且仅当时为奇函数,当且仅当时为偶函数;对于,当且仅当时为奇函数.
(5)函数的单调递增区间由不等式来确定,单调递减区间由不等式来确定;函数的单调递增区间由不等式来确定,单调递减区间由不等式来确定;函数的单调递增区间由不等式
来确定.
【注】函数,,(有可能为负数)的单调区间:先利用诱导公式把化为正数后再求解.
(6)函数图象的对称轴为,对称中心为;函数图象的对称轴为,对称中心为;函数图象的对称中心为.
【注】函数,的图象与轴的交点都为对称中心,过最高点或最低点且垂直于轴的直线都为对称轴. 函数的图象与轴的交点和渐近线与轴的交点都为对称中心,无对称轴.
【考点研****一点通】
1、定义域和值域
(1) (2)
(3) (4)
【点拨】(1)(4)利用两角和公式对函数解析式化简整理,进而根据正弦函数的性质求出函数的最大值及最小值,注意自变量的取值范围. (2)根据角的范围得出sinx的范围,运用换元配方后求出y的最大值及最小值,进而得出函数的值域.(3)解析式利用二倍角的正弦公式化简后求值域;
【解析】(1)∵,
∴,
当,即时,;当,即时,,
∴.
(2),
令:,则
∵为增函数;
∴.
(3)根据可知,
故函数的值域为.
(4),
由知,由正弦函数的单调性可知,
故函数的值域为.
【总结】①形如或,可根据的有界性来求最值;②形如或可看成关于的二次函数,但也要注意它与二次函数求最值的区别,其中;③形如可化为(其中)的形式来确定最值.
【变式1-2】 已知函数的定义域是,值域是,求常数.
【解析】
∵,∴, ∴,
若,则当时函数取得最大值,当时函数取得最小值,
∴,解得:,
若时,则当时函数取得最大值,当时函数取得最小值,
∴,解得:, 所以,或.
考点02奇偶性、周期性、单调性
2、已知函数,则,,的大小关系为 .
【答案】
【解析】因为是偶函数,所以,
又时,
所以函数在上单调递增..
所以
【变式2-1】已知函数若是偶函数,则 .
【答案】
【解析
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档