下载此文档

人教高中数学第五节 二项分布与正态分布 教案.doc


高中 高三 上学期 数学 人教版

1340阅读234下载22页404 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学第五节 二项分布与正态分布 教案.doc
文档介绍:
第五节 二项分布与正态分布
核心素养立意下的命题导向
1.结合古典概型,考查条件概率、独立事件的概率的计算,凸显数学运算的核心素养.
2.结合n次独立重复试验的概念,考查随机变量的二项分布,凸显数学抽象的核心素养.
3.结合频率分布直方图,考查正态分布曲线的特点、3σ原则的应用,凸显直观想象的核心素养.
[理清主干知识]
1.条件概率
(1)条件概率的定义
设A,B为两个事件,且P(A)>0,称P(B|A)=为在事件A发生的条件下,事件B发生的条件概率.
(2)条件概率的性质
①条件概率具有一般概率的性质,即0≤P(B|A)≤1.
②如果B,C是两个互斥事件,则P((B∪C)|A)=P(B|A)+P(C|A).
2.相互独立事件的概率
(1)相互独立事件的定义及性质
①定义:设A,B是两个事件,若P(AB)=P(A)·P(B),则称事件A与事件B相互独立.
②性质:若事件A与B相互独立,那么A与,与B,与也都相互独立.
(2)独立重复试验概率公式
在相同条件下重复做的n次试验称为n次独立重复试验,若用Ai(i=1,2,…,n)表示第i次试验结果,则P(A1A2A3…An)=P(A1)P(A2)…P(An).
(3)二项分布的定义
在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,则P(X=k)=Cpk(1-p)n-k,k=0,1,2,…,n.此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.
3.正态分布
(1)正态曲线的定义
函数φμ,σ(x)=e,x∈(-∞,+∞),其中实数μ和σ(σ>0)为参数,称φμ,σ(x)的图象为正态分布密度曲线,简称正态曲线.
(2)正态分布的定义及表示
如果对于任何实数a,b(a<b),随机变量X满足P(a<X≤b)=φμ,σ(x)dx,则称随机变量X服从正态分布,记作N(μ,σ2).
(3)正态曲线的特点
①曲线位于x轴的上方,与x轴不相交.
②曲线是单峰的,它关于直线x=μ对称.
③曲线在x=μ处达到峰值.
④曲线与x轴之间的面积为1.
⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿着x轴平移.
⑥当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.
(4)正态分布中的3σ原则
①P(μ-σ<X≤μ+σ)=0.682_6.
②P(μ-2σ<X≤μ+2σ)=0.954_4.
③P(μ-3σ<X≤μ+3σ)=0.997_4.
[澄清盲点误点]
一、关键点练明
1.(条件概率)甲、乙两市都位于长江下游,根据一百多年来的气象记录,知道一年中下雨天的比例甲市占20%,乙市占18%,两地同时下雨占12%,记P(A)=0.2,P(B)=0.18,P(AB)=0.12,则P(A|B)和P(B|A)分别等于(  )
A.,        B.,
C., D.,
解析:选C P(A|B)===,P(B|A)===.
2.(正态分布)已知随机变量ξ服从正态分布N(0,σ2).若P(ξ>2)=0.023,则P(-2≤ξ≤2)=(  )
A.0.477 B.0.628
C.0.954 D.0.977
解析:选C ∵μ=0,∴P(ξ>2)=P(ξ<-2)=0.023,
∴P(-2≤ξ≤2)=1-2×0.023=0.954.
3.(二项分布)设随机变量X~B,则P(X=3)等于________.
解析:∵X~B,∴P(X=3)=C3×3=.
答案:
4.(相互独立事件)甲、乙、丙三人将参加某项测试.他们能达标的概率分别是0.8,0.6,0.5,则三人都达标的概率为________,三人中至少有一人达标的概率为________.
解析:每个人是否达标是相互独立的,
“三人中至少有一人达标”的对立事件为“三人均未达标”,
设三人都达标为事件A,三人中至少有一人达标为事件B,
则P(A)=0.8×0.6×0.5=0.24,
P(B)=1-0.2×0.4×0.5=0.96.
答案:0.24 0.96
二、易错点练清
1.(条件概率公式使用错误)由0,1组成的三位数编号中,若事件A表示“第二位数字为0”,事件B表示“第一位数字为0”,则P(A|B)=________.
解析:因为第一位数字可为0或1,所以第一位数字为0的概率P(B)=,第一位数字为0且第二位数字也为0,即事件A,B同时发生的概率P(AB)=×=,所以P(A|B)===.
答案:
2.(恰有一个发生理解错误)计算机毕业考试分为理论与操作两部分,每部分考试成绩
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档