下载此文档

人教专题1.2 全称量词与存在量词、充要条件 2022年高考数学一轮复习讲练测(讲)解析版.docx


高中 高三 下学期 数学 人教版

1340阅读234下载9页197 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教专题1.2 全称量词与存在量词、充要条件 2022年高考数学一轮复习讲练测(讲)解析版.docx
文档介绍:
专题1.2 全称量词与存在量词、充要条件
新课程考试要求
1.理解命题的必要条件、充分条件、充要条件的意义,能判断并证明命题成立的充分条件、必要条件、充要条件.
2.全称量词与存在量词
(1)理解全称量词与存在量词的意义.
(2)能正确地对含有一个量词的命题进行否定.
核心素养
培养学生逻辑推理(例2、例4)、数学运算(例1、例4、例5)、直观想象能力(例2)
考向预测
1.全称量词与存在量词
2.充分条件与必要条件的判定
3.充分条件、必要条件的应用
【知识清单】
1. 充分条件与必要条件
(1)若p⇒q,则p是q的充分条件,q是p的必要条件;
(2)若p⇒q,且qp,则p是q的充分不必要条件;
(3)若pq且q⇒p,则p是q的必要不充分条件;
(4)若p⇔q,则p是q的充要条件;
(5)若pq且qp,则p是q的既不充分也不必要条件.
2. 全称量词与存在量词
1.全称量词与全称命题
(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“”表示.
(2)含有全称量词的命题,叫做全称命题.
(3)全称命题“对M中任意一个x,有p(x)成立”可用符号简记为,读作“对任意x属于M,有p(x)成立”.
2.存在量词与特称命题
(1)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“”表示.
(2)含有存在量词的命题,叫做特称命题.
(3)特称命题“存在M中的一个x0,使p(x0)成立”可用符号简记为,读作“存在M中的元素x0,使p(x0)成立”.
3.全称命题与特称命题的否定
(1)全称命题的否定是特称命题;特称命题的否定是全称命题.
(2)“或”的否定为:“非且非”;“且”的否定为:“非或非”.
(3)含有一个量词的命题的否定
命题
命题的否定
【考点分类剖析】
考点一 充要条件的判定
例1.(2020·天津高考真题)设,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
【答案】A
【解析】
首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可.
【详解】
求解二次不等式可得:或,
据此可知:是的充分不必要条件.
故选:A.
例2.(2020·浙江高考真题)已知空间中不过同一点的三条直线m,n,l,则“m,n,l在同一平面”是“m,n,l两两相交”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
【答案】B
【解析】
将两个条件相互推导,根据能否推导的结果判断充分必要条件.
【详解】
依题意是空间不过同一点的三条直线,
当在同一平面时,可能,故不能得出两两相交.
当两两相交时,设,根据公理可知确定一个平面,而
,根据公理可知,直线即,所以在同一平面.
综上所述,“在同一平面”是“两两相交”的必要不充分条件.
故选:B
例3.(2019·北京高考真题(理))设点A,B,C不共线,则“与的夹角为锐角”是“”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
【答案】C
【解析】
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档