下载此文档

人教版初中数学专题12 圆的有关性质与计算(解析版).doc


初中 九年级 上学期 数学 人教版

1340阅读234下载51页3.13 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版初中数学专题12 圆的有关性质与计算(解析版).doc
文档介绍:
决胜2021中考数学压轴题全揭秘精品
专题12 圆的有关性质与计算
【考点1】垂径定理
【例1】(2020·广东广州·中考真题)往直径为的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为( )
A. B. C. D.
【答案】C
【分析】
过点O作OD⊥AB于D,交⊙O于E,连接OA,根据垂径定理即可求得AD的长,又由⊙O的直径为,求得OA的长,然后根据勾股定理,即可求得OD的长,进而求得油的最大深度的长.
【详解】
解:过点O作OD⊥AB于D,交⊙O于E,连接OA,
由垂径定理得:,
∵⊙O的直径为,
∴,
在中,由勾股定理得:,
∴,
∴油的最大深度为,
故选:.
【点睛】
本题主要考查了垂径定理的知识.此题难度不大,解题的关键是注意辅助线的作法,构造直角三角形,利用勾股定理解决.
【变式1-1】(2020·浙江湖州·中考真题)如图,已知AB是半圆O的直径,弦CD∥AB,CD=8.AB=10,则CD与AB之间的距离是_____.
【答案】3
【分析】
过点O作OH⊥CD于H,连接OC,先利用垂径定理得到CH=4,然后在Rt△OCH中,利用勾股定理即可求解.
【详解】
解:过点O作OH⊥CD于H,
连接OC,如图,则CH=DH=CD=4,
在Rt△OCH中,OH==3,
所以CD与AB之间的距离是3.
故答案为3.
【点睛】
此题主要考查垂径定理和勾股定理,熟练掌握垂径定理和勾股定理是解题关键.
【变式1-2】(2020·江苏南通·中考真题)已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O到AB的距离为_____cm.
【答案】12
【分析】
如图,作OC⊥AB于C,连接OA,根据垂径定理得到AC=BC=AB=5,然后利用勾股定理计算OC的长即可.
【详解】
解:如图,作OC⊥AB于C,连接OA,
则AC=BC=AB=5,
在Rt△OAC中,OC==12,
所以圆心O到AB的距离为12cm.
故答案为:12.
【点睛】
本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
【考点2】弧、弦、圆心角之间的关系
【例2】(2019·四川自贡中考真题)如图,⊙中,弦与相交于点,,连接.
求证:⑴;
⑵.
【答案】(1)见解析;(2)见解析.
【解析】
【分析】
(1)由AB=CD知,即,据此可得答案;
(2)由知AD=BC,结合∠ADE=∠CBE,∠DAE=∠BCE可证△ADE≌△CBE,从而得出答案.
【详解】
证明(1)∵AB=CD,
∴,即,
∴;
(2)∵,
∴AD=BC,
又∵∠ADE=∠CBE,∠DAE=∠BCE,
∴△ADE≌△CBE(ASA),
∴AE=CE.
【点睛】
本题主要考查圆心角、弧、弦的关系,圆心角、弧、弦三者的关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.
【变式2-1】(2018·黑龙江中考真题)如图,在⊙O中,AB=2AC,AD⊥OC于D.求证:AB=2AD.
【答案】证明见解析
【解析】
【分析】
延长AD交⊙ O于E,可得、AB=AE,可得出结论.
【详解】
延长AD交⊙O于E,
∵OC⊥AD,
∴,AE=2AD,
∵,
∴,
∴AB=AE,
∴AB=2AD.
【点睛】
本题主要考查垂径定理及弧、弦、圆心角之间的关系,灵活做辅助线是解本题的关键.
【变式2-2】(2019·江苏中考真题)如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证PA=PC.
【答案】见解析.
【解析】
【分析】
连接AC,由圆心角、弧、弦的关系得出,进而得出,根据等弧所对的圆周角相等得出∠C=∠A,根据等角对等边证得结论.
【详解】
解:如图,连接.
∵,
∴.
∴,即.
∴.
∴.
【点睛】
本题考查了圆心角、弧、弦的关系,圆周角定理,等腰三角形的判定等,熟练掌握性质定理是解题的关键.
【考点3】圆周角定理及其推论
【例3】(2020·山东青岛·中考真题)如图,是的直径,点,在上,,交于点.若.则的度数为( )
A. B. C. D.
【答案】B
【分析】
先根据圆周角定理得到∠,再根据等弧所对的弦相等,得到,∠,最后根据同弧所对的圆周角等于圆心角的一半,得到∠CAD=,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档