下载此文档

人教版初中数学第一讲 数学思想方法(解析版).docx


初中 九年级 上学期 数学 人教版

1340阅读234下载33页4.28 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版初中数学第一讲 数学思想方法(解析版).docx
文档介绍:
- 1 -
总复****
第一讲 数学思想与方法
性质及简单运用

学生姓名
年 级
学 科
数 学
教学目标
1、能从问题中体会分类讨论思想、函数方程思想、数形结合思想、引参转化思想,并且能将问题与实际联系起来,能从思想中衍生除数学方法;
2、在解答过程中去观察、归纳、总结、建模等数学活动,以加深学生对相关数学知识的理解,认识数学知识之间的联系。
数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。
数学方法即用数学语言表述事物的状态、关系和过程,并加以推导、演算和分析,以形成对问题的解释、判断和预言的方法。同一手段、门路或程序被重复运用了多次,并且都达到了预期的目的,就成为数学方法。
思想与方法并不是孤立独行的,二者之间互相联系,思想对应方法,方法返衬思想。
- 1 -
模块一
数学思想

数学思想——数形结合思想
题组一
数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合。作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等。
1、数形结合的内容
(1)绝对值问题:画数轴,根据绝对值的性质(一点到另一点的距离)得到一个范围,从而解出绝对值。
(2)函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合
体现了数形结合的特征与方法。
(3)方程与不等式:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。
(4)几何探究:几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。
2、数形结合的类型
(1)以“数”化“形”:对于“数”转化为“形”这类问题,解决问题的基本思路: 明确题中所给的条件和所求的目标,从题中已知条件或结论出发,先观察分析其是否相似(相同)于已学过的基本公式(定理)或图形的表达式,再作出或构造出与之相适合的图形,最后利用已经作出或构造出的图形的性质、几何意义等,联系所要求解(求证)的目标去解决问题。
(2)以“形”变“数”:解题的基本思路: 明确题中所给条件和所求的目标,分析已给出的条件和所求目标的特点和性质,理解条件或目标在图形中的重要几何意义,用已学过的知识正确的将题中用到的图形的用代数式(一般利用坐标转化也可以通过引入参数解决)表达出来,再根据条件和结论的联系,利用相应的公式或定理等。
数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:①要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;②是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;③是正确确定参数的取值范围。
- 1 -

例1 已知:实数,在数轴上的位置如图所示,化简:.
【规范答题】由数轴可得:,则,,,
则.
例2 在平行四边形中,,,,则平行四边形的面积等于    .
【规范答题】
过作于,在中,,,
,,在中,,

如图1,,平行四边形的面积,
如图2,,平行四边形的面积,故答案为:或.

例3 如图,点,依次在的图象上,点,依次在轴的正半轴上.若△,△ 均为等边三角形,则点的坐标为   .
【规范答题】作,垂足为,△为等边三角形,,,
,设的坐标为,点在的图象上,
,解得,,,作,垂足为.
设,则,,.
- 1 -
在反比例函数的图象上,代入,得,
化简得,解得:.,.
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档