下载此文档

人教版初中数学专题48 中考数学数形结合思想(解析版).docx


初中 九年级 下学期 数学 人教版

1340阅读234下载27页645 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版初中数学专题48 中考数学数形结合思想(解析版).docx
文档介绍:
专题48 中考数学数形结合思想
数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合。作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等。
1.数形结合思想的含义
数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。
2.数形结合思想应用常见的四种类型
(1)实数与数轴。实数与数轴上的点具有一一对应关系,借助数轴观察数的特点,直观明了。
(2)在解方程(组)或不等式(组)中的应用。利用函数图象解决方程问题时,常把方程根的问题看作两个函数图象的交点问题来解决;利用数轴或函数图象解有关不等式(组)的问题直观,形象,易于找出不等式(组)解的公共部分或判断不等式组有无公共解。
(3)在函数中的应用。借助于图象研究函数的性质是一种常用的方法,函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。
(4)在几何中的应用。对于几何问题,我们常通过图形,找出边、角的数量关系,通过边、角的数量关系,得出图形的性质等。
3.数形结合思想解题方法
“数”和“形”是数学中两个最基本的概念, 每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述.数形结合的实质就是将抽象的数学语言与直观的图形结合起来
,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路;或者在研究图形时,利用代数的知识,解决几何的问题.实现了抽象概念与具体图形的联系和转化,化难为易,化抽象为直观.
【例题1】(2020•遵义)构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt△ACB中,∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,得∠D=15°,所以tan15°=ACCD=12+3=2-3(2+3)(2-3)=2-3.类比这种方法,计算tan22.5°的值为(  )
A.2+1 B.2-1 C.2 D.12
【答案】B
【分析】在Rt△ACB中,∠C=90°,∠ABC=45°,延长CB使BD=AB,连接AD,得∠D=22.5°,设AC=BC=1,则AB=BD=2,根据tan22.5°=ACCD计算即可.
【解析】在Rt△ACB中,∠C=90°,∠ABC=45°,延长CB使BD=AB,连接AD,得∠D=22.5°,
设AC=BC=1,则AB=BD=2,
∴tan22.5°=ACCD=11+2=2-1
【对点练****2019•湖北省仙桃市)不等式组的解集在数轴上表示正确的是(  )
A. B. C.D.
【答案】C
【解答】解:解不等式x﹣1>0得x>1,
解不等式5﹣2x≥1得x≤2,
则不等式组的解集为1<x≤2
【例题2】(2020•济宁)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是(  )
A.x=20 B.x=5 C.x=25 D.x=15
【答案】A
【分析】两直线的交点坐标为两直线解析式所组成的方程组的解.
【解析】∵直线y=x+5和直线y=ax+b相交于点P(20,25)
∴直线y=x+5和直线y=ax+b相交于点P为x=20.
【对点练****2020株洲模拟)直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围城的三角形面积为4,那么b1﹣b2等于   .
【答案】4
【解析】本题考查了一次函数与坐标轴的交点以及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.
如图,直线y=k1x+b1(k1>0)与y轴交于B点,则OB=b1,直线y=k2x+b2(k2<0)与y轴交于C,则OC=﹣b2,
∵△ABC的面积为4,
∴OA•OB+=4,
∴+=4,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档