下载此文档

人教版第13讲 新定义材料理解问题-2020年中考数学《二轮冲刺核心重点难点热点15讲》(全国通用)解析版.doc


初中 九年级 下学期 数学 人教版

1340阅读234下载40页1.35 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版第13讲 新定义材料理解问题-2020年中考数学《二轮冲刺核心重点难点热点15讲》(全国通用)解析版.doc
文档介绍:
硬核:狙击2020中考数学重点/难点/热点
新定义材料理解问题,其特点是:
创设新情境,赋予新内涵;
试题呈现形式活泼新颖;
一般取材于学生熟悉的生活实际,具有时代气息和教育价值.
这种问题一般都是先提供一种情景,或者一个解题思路,或介绍一种解题方法,或展示一个数学结论的推导过程等文字或图表材料,然后要求大家自主探索,理解其内容、思想方法,把握本质,解答试题中提出的问题.
对于这类题求解步骤是“阅读→分析→理解→创新应用”,其中最关键的是理解材料的作用和用意,一般是启发你如何解决问题或为了解决问题为你提供工具及素材.因此这种试题是考查大家随机应变能力和知识的迁移能力.
1. 涉及到定义知识的新情景问题
它要求学生在新定义的条件下,对提出的说法作出判断,主要考查学生阅读理解能力,分析问题和解决问题的能力.解此类型题的步骤有三:(1)认真阅读,正确理解新定义的含义;(2)运用新定义解决问题;(3)得出结论.
2. 涉及到数学理论应用探究问题
学****此类型题目,要解决后面提出的新问题,必须仔细研究前面的问题解法.即前面解决问题过程中用到的知识在后面问题中很可能还会用到,因此在解决新问题时,认真阅读,理解阅读材料中所告知的相关问题和内容,并注意这些新知识运用的方法步骤.
3. 涉及到日常生活中的实际问题
处理此类问题需要结合生活实际将图形转化为数学图形,利用数学知识进行解答。
【例题1】(2019•遂宁)阅读材料:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.
例如计算:(4+i)+(6﹣2i)=(4+6)+(1﹣2)i=10﹣i;
(2﹣i)(3+i)=6﹣3i+2i﹣i2=6﹣i﹣(﹣1)=7﹣i;
(4+i)(4﹣i)=16﹣i2=16﹣(﹣1)=17;
(2+i)2=4+4i+i2=4+4i﹣1=3+4i
根据以上信息,完成下面计算:
(1+2i)(2﹣i)+(2﹣i)2= 7﹣i .
【解析】(1+2i)(2﹣i)+(2﹣i)2=2﹣i+4i﹣2i2+4+i2﹣4i
=6﹣i﹣i2
=6﹣i+1
=7﹣i.
故答案为:7﹣i.
【变式1-1】(2019•湘西州)阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1•y2=x2•y1,根据该材料填空,已知=(4,3),=(8,m),且∥,则m= 6 .
【解析】∵=(4,3),=(8,m),且∥,
∴4m=3×8,
∴m=6;
故答案为6;
【变式1-2】(2019•娄底)已知点P(x0,y0)到直线y=kx+b的距离可表示为d=,例如:点(0,1)到直线y=2x+6的距离d==.据此进一步可得两条平行线y=x和y=x﹣4之间的距离为 2 .
【解析】当x=0时,y=x=0,即点(0,0)在直线y=x上,
因为点(0,0)到直线y=x﹣4的距离为:d===2,
因为直线y=x和y=x﹣4平行,
所以这两条平行线之间的距离为2.
故答案为2.
【例题2】(2019•重庆)在数的学****过程中,我们总会对其中一些具有某种特性的数进行研究,如学****自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数
﹣“纯数”.
定义:对于自然数n,在通过列竖式进行n+(n+1)+(n+2)的运算时各位都不产生进位现象,则称这个自然数n为“纯数”.
例如:32是“纯数”,因为32+33+34在列竖式计算时各位都不产生进位现象;23不是“纯数”,因为23+24+25在列竖式计算时个位产生了进位.
(1)请直接写出1949到2019之间的“纯数”;
(2)求出不大于100的“纯数”的个数,并说明理由.
【解析】(1)显然1949至1999都不是“纯数”,因为在通过列竖式进行n+(n+1)+(n+2)的运算时要产生进位.
在2000至2019之间的数,只有个位不超过2时,才符合“纯数”的定义.
所以所求“纯数”为2000,2001,2002,2010,2011,2012;
(2)不大于100的“纯数”的个数有13个,理由如下:
因为个位不超过2,十位不超过3时,才符合“纯数”的定义,
所以不大于100的“纯数”有:0,1,2,10,11,12,20,21,22,30,31,32,100.共13个.
【变式2-1】对任意一个四位数n,如果
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档