下载此文档

人教版专题41三角形(6)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版).doc


初中 七年级 上学期 数学 人教版

1340阅读234下载259页11.14 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版专题41三角形(6)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版).doc
文档介绍:
专题41三角形(6)(全国一年)
学校:___________姓名:___________班级:___________考号:___________
一、解答题
1.(2020·湖北咸宁?中考真题)定义:有一组对角互余的四边形叫做对余四边形.
理解:
(1)若四边形是对余四边形,则与的度数之和为______;
证明:
(2)如图1,是的直径,点在上,,相交于点D.
求证:四边形是对余四边形;
探究:
(3)如图2,在对余四边形中,,,探究线段,和之间有怎样的数量关系?写出猜想,并说明理由.
【答案】(1)90°或270°;(2)见解析;(3),理由见解析
【解析】
【分析】
(1)分当∠A和∠C互余时,当∠B和∠D互余时,两种情况求解;
(2)连接BO,得到∠BON+∠BOM=180°,再利用圆周角定理证明∠C+∠A=90°即可;
(3)作△ABD的外接圆O,分别延长AC,BC,DC,交圆O于E,F,G,连接DF,DE,EF,先证明GF是圆O的直径,得到,再证明△ABC∽△FEC,△ACD∽△GCE,△BCD∽△GCF,可得,,从而得出,根据△ABC为等边三角形可得AB=AC=BC,从而得到.
【详解】
解:(1)∵四边形是对余四边形,
当∠A和∠C互余时,
∠A+∠C=90°,
当∠B与∠D互余时,
∠B+∠D=90°,
则∠A+∠C=360°-90°=270°,
故答案为:90°或270°;
(2)如图,连接BO,
可得:∠BON=2∠C,∠BOM=2∠A,
而∠BON+∠BOM=180°,
∴2∠C+2∠A=180°,
∴∠C+∠A=90°,
∴四边形是对余四边形;
(3)∵四边形ABCD为对于四边形,∠ABC=60°,
∴∠ADC=30°,
如图,作△ABD的外接圆O,分别延长AC,BC,DC,交圆O于E,F,G,连接DF,DE,EF,
则∠AEF=∠ABC=60°,∠AEG=∠ADG=30°,
∴∠AEF+∠AEG=90°,即∠FEG=90°,
∴GF是圆O的直径,
∵AB=BC,
∴△ABC为等边三角形,
∵∠ABC=∠AEF,∠ACB=∠ECF,
∴△ABC∽△FEC,得:,则,
同理,△ACD∽△GCE,得:,则,
△BCD∽△GCF,得:,
可得:,
而,
∴,
∴,
∴,
∵AB=BC=AC,
∴.
【点睛】
本题考查了相似三角形的判定和性质,四边形的新定义问题,圆周角定理,等边三角形的判定和性质,多边形内角和,解题的关键是理解对余四边形的概念,结合所学知识求证.
2.(2020·江苏扬州?中考真题)如图1,已知点O在四边形ABCD的边AB上,且,OC平分,与BD交于点G,AC分别与BD、OD交于点E、F.
(1)求证:;
(2)如图2,若,求的值;
(3)当四边形ABCD的周长取最大值时,求的值.
【答案】(1)见详解;(2);(3)
【解析】
【分析】
(1)先由三角形外角得出∠BOD=∠DAO+∠ODA,然后根据OA=OD,OC平分∠BOD得出∠DAO=∠ODA,∠COD=∠COB,可得∠COD=∠ODA,即可证明;
(2)先证明△BOG≌△DOG,得出∠ADB=∠OGB=90°,然后证明△AFO∽△AED,得出∠AOD=∠ADB=90°,,根据勾股定理得出AD=2,即可求出答案;
(3)先设AD=2x,OG=x,则CG=2-x,BG==,BC===CD,然后得出四边形ABCD的周长=4+2x+4,令=t≥0,即x=2-t2,可得四边形ABCD的周长=-2(t-1)2+10,得出x=2-t2=1,即AD=2,然后证明△ADF≌△COF,得出DF=OF=OD=1,根据△ADO是等边三角形,得出∠DAE=30°,可得,求出DE=,即可得出答案.
【详解】
(1)由三角形外角可得∠BOD=∠DAO+∠ODA,
∵OA=OD,
∴∠DAO=∠ODA,
∵OC平分∠BOD,
∴∠COD=∠COB,
∴∠COD=∠ODA,
∴OC∥AD;
(2)∵OC平分,
∴∠COD=∠COB,
在△BOG与△DOG中,
∴△BOG≌△DOG,
∴∠BGO=∠DGO=90°,
∵AD∥OC,
∴∠ADB=∠OGB=90°,∠DAC=∠OCA,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠DAC=∠OAC,
∵DE=DF,
∴∠DFE=∠DEF,
∵∠DFE=∠AFO,
∴∠AFO=∠DEF,
∴△AFO∽△AED,
∴∠AOD=∠ADB=90°,,
∵OA=OD=2,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档