下载此文档

人教版初中数学第13关 以二次函数与圆的问题为背景的解答题(解析版).docx


初中 九年级 上学期 数学 人教版

1340阅读234下载54页1.39 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版初中数学第13关 以二次函数与圆的问题为背景的解答题(解析版).docx
文档介绍:
第十三关:以二次函数与圆的问题为背景的解答题
【总体点评】二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次函数大题,很多学生在有限的时间内都不能很好完成。由于在高中和大学中很多数学知识都与函数知识或函数的思想有关,学生在初中阶段函数知识和函数思维方法学得好否,直接关系到未来数学的学****圆”在初中阶段学****占有重要位置,“垂径定理”、“点与圆的位置关系”的判定与性质、“直线与圆的位置关系”的判定与性质、“正多边形的判定与性质”通常是命题频率高的知识点.由于这部分知识的综合性较强,多作为单独的解答题出现.如果把圆放到直角坐标系中,同二次函数结合,则多作为区分度较高的压轴题中出现.此类题目由于解题方法灵活,考查的知识点全面,体现了方程、建模、转化、数形结合、分类讨论等多种数学思想,得到命题者的青睐
【解题思路】二次函数与圆都是初中数学的重点内容,历来是中考数学命题的热点,其本身涉及的知识点就较多,综合性和解题技巧较强,给解题带来一定的困难,而将函数与圆相结合,并作为中考的压轴题,就更显得复杂了.只要我们掌握解决这类问题的思路和方法,采取分而治之,各个击破的思想,问题是会迎刃而解的.解决二次函数与圆的问题,用到的数学思想方法有化归思想、分类思想、数学结合思想,以及代入法、消元法、配方法、代定系数法等。解题时要注意各知识点之间的联系和数学思想方法、解题技巧的灵活应用,要抓住题意,化整为零,层层深入,各个击破,从而达到解决问题的目的。
【典型例题】
【例1】(2019·黑龙江中考真题)如图,抛物线y=ax2+bx-53经过点A(1,0)和点B(5,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)以点A为圆心,作与直线BC相切的⊙A,请判断⊙A与y轴有怎样的位置关系,并说明理由;
(3)在直线BC上方的抛物线上任取一点P,连接PB、PC,请问:△PBC的面积是否存在最大值?若存在,求出这个值和此时点P的坐标;若不存在,请说明理由.
【答案】(1)y=-13x2+2x-53;(2)相交;(3)S△PBC有最大值12524,此时P点坐标为(52,54).
【解析】
试题分析:(1)把A、B两点分别代入抛物线解析可求得a和b,可求得抛物线解析式;
(2)过A作AD⊥BC于点D,则AD为⊙A的半径,由条件可证明△ABD∽△CBO,利用相似三角形的性质可求得AD的长,可求得半径,进而得出答案;
(3)由待定系数法可求得直线BC解析式,过P作PQ∥y轴,交直线BC于点Q,交x轴于点E,可设出P、Q的坐标,可表示出△PQC和△PQB的面积,可表示出△PBC的面积,再利用二次函数的性质可求得其最大值,容易求得P点坐标.
试题解析:(1)∵抛物线y=ax2+bx-53经过点A(1,0)和点B(5,0),∴把A、B两点坐标代入可得a+b-53=025a+5b-53=0,解得:a=-13b=2,∴抛物线解析式为y=-13x2+2x-53;
(2)相交,理由:过A作AD⊥BC于点D,如图1,∵⊙A与BC相切,∴AD为⊙A的半径,由(1)可知C(0,﹣53),且A(1,0),B(5,0),∴OB=5,AB=OB﹣OA=4,OC=53,在Rt△OBC中,由勾股定理可得BC=OC2+OB2=(53)2+52=5103,∵∠ADB=∠BOC=90°,∠ABD=∠CBO,∴△ABD∽△CBO,∴ADOC=ABBC,即AD53=45103,解得AD=2105,即⊙A的半径为2105,∵2105>1,∴⊙A与y轴相交;
(3)∵C(0,﹣53),∴可设直线BC解析式为y=kx﹣53,把B点坐标代入可求得k=13,∴直线BC的解析式为y=13x-53,过P作PQ∥y轴,交直线BC于点Q,交x轴于点E,如图2,设P(x,-13x2+2x-53),则Q(x,13x-53),∴PQ=(-13x2+2x-53)﹣(13x-53)=-13x2+53x=-13(x-52)2+2512,∴S△PBC=S△PCQ+S△PBQ=12PQ•OE+12PQ•BE=12PQ(OE+BE)=12PQ•OB=52PQ=-56(x-52)2+12524,∴当x=52时,S△PBC有最大值12524,此时P点坐标为(52,54),∴当P点坐标为(52,54)时,△PBC的面积有最大值.
考点:二次函数综合题;探究型;二次函数的最值;最值问题;存在型;压轴题.
【例2】(2019·广西中考真题)如图,直线交轴于点,交轴于点,点的坐标为,抛物线经过三点,抛物线的顶点为点,对称轴与轴的交点为点,点关于原点的对称点为,连接,以点为圆心,的长为半径作圆,点为直线上的一个动点.
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档