下载此文档

人教版微专题 数列新定义问题 学案——2023届高考数学一轮《考点·题型·技巧》精讲与精练.docx


高中 高一 上学期 数学 人教版

1340阅读234下载44页2.92 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版微专题 数列新定义问题 学案——2023届高考数学一轮《考点·题型·技巧》精讲与精练.docx
文档介绍:
第 1 页
学科网(北京)股份有限公司
学科网(北京)股份有限公司
试卷第1页,共7页
微专题:数列新定义问题
【考点梳理】
解数列中的新定义问题的解题步骤:①读懂定义,理解新定义数列的含义;②通过特例列举(一般是前面一些项)寻找新定义数列的规律及性质,以及新定义数列与已知数列(如等差与等比数列)的关系,进行求解.
【典例剖析】
典例1.定义:在数列中,若对任意的都满足(d为常数),则称数列为等差比数列.已知等差比数列中,,,则(       )
A. B. C. D.
典例2.【多选】“提丢斯数列”是18世纪由德国物理学家提丢斯给出的,具体为,取0,3,6,12,24,48,96,…这样一组数,容易发现,这组数从第3项开始,每一项是前一项的2倍,将这组数的每一项加上4,再除以10,就得到“提丢斯数列”:0.4,0.7,1.0,1.6,2.8,5.2,10.0,…,则下列说法中正确的是(       )
A.“提丢斯数列”是等比数列
B.“提丢斯数列”的第99项为
C.“提丢斯数列”的前31项和为
D.“提丢斯数列”中,不超过20的有8项
典例3.(1)定义:若数列满足,则称为“平方递推数列”.已知:数列中,,.
①求证:数列是“平方递推数列”;
②求证:数列是等比数列;
③求数列的通项公式;
(2)已知:数列中,,,求:数列的通项.
【双基达标】
4.已知等差数列和等比数列满足,,,.
第 2 页
学科网(北京)股份有限公司
学科网(北京)股份有限公司
试卷第1页,共7页
(1)求和的通项公式;
(2)数列和中的所有项分别构成集合,,将的所有元素按从小到大依次排列构成一个新数列,求数列的前60项和.
5.若实数数列满足,则称数列为“P数列”.
(1)若数列是P数列,且,,求,的值;
(2)求证:若数列是P数列,则的项不可能全是正数,也不可能全是负数;
(3)若数列是P数列,且中不含值为零的项,记的前2025项中值为负数的项的个数为m,求m的所有可能取值.
6.已知等比数列的各项均为正数,且.
(1)求数列的通项公式;
(2)设的前n项和为,表示a与b的最大值,记,求数列的前n项和.
7.已知是无穷数列.给出两个性质:
①对于中任意两项,在中都存在一项,使;
②对于中任意项,在中都存在两项.使得.
(Ⅰ)若,判断数列是否满足性质①,说明理由;
(Ⅱ)若,判断数列是否同时满足性质①和性质②,说明理由;
(Ⅲ)若是递增数列,且同时满足性质①和性质②,证明:为等比数列.
8.学****资料:有一正项数列,若作商,则当时,当时,.这是一种数列放缩的方法.现有一等差数列的前项和为的前项和为.
(1)求;
(2)求证:.
9.已知数列满足,且.
(1)求数列的通项公式;
第 4 页
学科网(北京)股份有限公司
学科网(北京)股份有限公司
试卷第1页,共7页
(2)已知数列满足 ,定义使为整数的叫做“幸福数”,求区间内所有“幸福数"的和.
10.已知是由正整数组成的无穷数列,该数列前项的最大值记为,最小值记为,令   ,并将数列称为的“生成数列”.
(1)若,求数列的前项和;
(2)设数列的“生成数列”为,求证:;
(3)若是等比数列,证明:存在正整数,当时,   是等比数列.
【高分突破】
11.若无穷数列{}满足如下两个条件,则称{}为无界数列:
①(n=1,2,3......)
②对任意的正数,都存在正整数N,使得.
(1)若,(n=1,2,3......),判断数列{},{}是否是无界数列;
(2)若,是否存在正整数k,使得对于一切,都有成立?若存在,求出k的范围;若不存在说明理由;
(3)若数列{}是单调递增的无界数列,求证:存在正整数m,使得.
12.已知为数列的前项和,且满足,.
(1)求证:数列是递增数列;
(2)如果存在一个正数,使得恒成立,则称数列是有界的.判断数列是否有界,并说明理由.
13.已知无穷数列满足:,(,).对任意正整数,记,.
(1)写出,;
(2)当时,求证:数列是递增数列,且存在正整数,使得;
(3)求集合.
14.对于无穷数列,,若,则称是的“伴随数列”.其中,
第 4 页
学科网(北京)股份有限公司
学科网(北京)股份有限公司
试卷第1页,共7页
,分别表示中的最大数和最小数.已知为无穷数列,其前项和为,数列是的“伴随数列”.
(1)若,求的前项和;
(2)证明:且;
(3)若,求所有满足该条件的.
15.对于数列,若从第二项起的每一项均大于该项之前的所有项的和,则称为数列.
(1)若
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档