下载此文档

人教版专题10 解三角形(教师版).docx


高中 高一 上学期 数学 人教版

1340阅读234下载28页1.08 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版专题10 解三角形(教师版).docx
文档介绍:
专题10 解三角形
1.【2022年全国甲卷】沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,AB是以O为圆心,OA为半径的圆弧,C是的AB中点,D在AB上,CD⊥AB.“会圆术”给出AB的弧长的近似值s的计算公式:s=AB+CD2OA.当OA=2,∠AOB=60°时,s=(       )
A.11−332 B.11−432 C.9−332 D.9−432
【答案】B
【解析】
【分析】
连接OC,分别求出AB,OC,CD,再根据题中公式即可得出答案.
【详解】
解:如图,连接OC,
因为C是AB的中点,
所以OC⊥AB,
又CD⊥AB,所以O,C,D三点共线,
即OD=OA=OB=2,
又∠AOB=60°,
所以AB=OA=OB=2,
则OC=3,故CD=2−3,
所以s=AB+CD2OA=2+2−322=11−432.
故选:B.
2.【2021年甲卷文科】在中,已知,,,则(       )
A.1 B. C. D.3
【答案】D
【解析】
【分析】
利用余弦定理得到关于BC长度的方程,解方程即可求得边长.
【详解】
设,
结合余弦定理:可得:,
即:,解得:(舍去),
故.
故选:D.
【点睛】
利用余弦定理及其推论解三角形的类型:
(1)已知三角形的三条边求三个角;
(2)已知三角形的两边及其夹角求第三边及两角;
(3)已知三角形的两边与其中一边的对角,解三角形.
3.【2021年乙卷理科】魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点,,在水平线上,和是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,称为“表距”,和都称为“表目距”,与的差称为“表目距的差”则海岛的高(       )
A.表高 B.表高
C.表距 D.表距
【答案】A
【解析】
【分析】
利用平面相似的有关知识以及合分比性质即可解出.
【详解】
如图所示:
由平面相似可知,,而 ,所以
,而 ,
即= .
故选:A.
【点睛】
本题解题关键是通过相似建立比例式,围绕所求目标进行转化即可解出.
4.【2020年新课标3卷理科】在△ABC中,cosC=,AC=4,BC=3,则cosB=(       )
A. B. C. D.
【答案】A
【解析】
【分析】
根据已知条件结合余弦定理求得,再根据,即可求得答案.
【详解】
在中,,,
根据余弦定理:
可得 ,即

故.
故选:A.
【点睛】
本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题.
5.【2019年新课标1卷文科】△ABC的内角A,B,C的对边分别为a,b,c,已知asinA-bsinB=4csinC,cosA=-,则=
A.6 B.5 C.4 D.3
【答案】A
【解析】
【分析】
利用余弦定理推论得出a,b,c关系,在结合正弦定理边角互换列出方程,解出结果.
【详解】
详解:由已知及正弦定理可得,由余弦定理推论可得
,故选A.
【点睛】
本题考查正弦定理及余弦定理推论的应用.
6.【2018年新课标2卷理科】在中,,BC=1,AC=5,则AB=
A. B. C. D.
【答案】A
【解析】
【详解】
分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.
详解:因为
所以,选A.
点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.
7.【2018年新课标3卷理科】的内角的对边分别为,,,若的面积为,则
A. B. C. D.
【答案】C
【解析】
【详解】
分析:利用面积公式和余弦定理进行计算可得.
详解:由题可知
所以
由余弦定理
所以
故选C.
点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理.
8.【2022年全国甲卷】已知△ABC中,点D在边BC上,∠ADB=120°,AD=2,CD=2BD.当ACAB取得最小值时,BD=________.
【答案】3−1##−1+3
【解析】
【分析】
设CD=2BD=2m>0,利用余弦定理表示出AC2AB2后,结合基本不等式即可得解.
【详解】
设CD=2BD=2m>0,
则在△ABD中,AB2=BD2+AD2−2BD⋅ADcos∠ADB=m2+4+2m,
在△ACD中,AC2=CD2+AD2−2CD⋅ADcos∠ADC=4m2+4−4m,
所以AC2AB2=4m2+
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档