下载此文档

人教版专题10-1 极坐标与参数方程题型归类(讲+练)-2023年高考数学二轮复习讲练测(全国通用)(解析版).docx


高中 高一 上学期 数学 人教版

1340阅读234下载41页2.66 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版专题10-1 极坐标与参数方程题型归类(讲+练)-2023年高考数学二轮复习讲练测(全国通用)(解析版).docx
文档介绍:
专题10-1 极坐标与参数方程题型归类
目录
讲高考 1
题型全归纳 3
【题型一】极坐标1:三线及三线段型 3
【题型二】极坐标2:极坐标求面积型 6
【题型三】极坐标3:极坐标最值型 8
【题型四】极坐标4:面积最值 11
【题型五】极坐标5:极坐标求轨迹型 15
【题型六】参数方程1:三等分点型 18
【题型七】参数方程2:参数点型 21
【题型八】参数方程3:最值 求参 23
【题型九】参数方程4:复杂参数型最值与范围 26
【题型十】参数方程5:取得最值时求对应点的坐标型 29
【题型十一】参数方程6:交点求参数型 32
专题训练 35
讲高考

1.(2022年高考全国乙卷数学(文)真题)在直角坐标系中,曲线C的参数方程为,(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知直线l的极坐标方程为.
(1)写出l的直角坐标方程;
(2)若l与C有公共点,求m的取值范围.
【答案】(1)(2)
【分析】(1)根据极坐标与直角坐标的互化公式处理即可;
(2)方法一:联立l与C的方程,采用换元法处理,根据新设a的取值范围求解m的范围即可.
【详解】(1)因为l:,所以,
又因为,所以化简为,
整理得l的直角坐标方程:
(2)[方法一]:【最优解】参数方程
联立l与C的方程,即将,代入中,
可得,
化简为,
要使l与C有公共点,则有解,
令,则,令,,
对称轴为,开口向上,


,即m的取值范围为.
[方法二]:直角坐标方程
由曲线的参数方程为,为参数,消去参数,可得,
联立,得,即,即有,即,的取值范围是.
【整体点评】方法一:利用参数方程以及换元,转化为两个函数的图象有交点,是该题的最优解;
方法二:通过消参转化为直线与抛物线的位置关系,再转化为二次函数在闭区间上的值域,与方法一本质上差不多,但容易忽视的范围限制而出错.
2.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))在直角坐标系xOy中,曲线C的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.
(1)求C和l的直角坐标方程;
(2)求C上的点到l距离的最小值.
【答案】(1);;(2)
【分析】(1)利用代入消元法,可求得的直角坐标方程;根据极坐标与直角坐标互化原则可得的直角坐标方程;(2)利用参数方程表示出上点的坐标,根据点到直线距离公式可将所求距离表示为三角函数的形式,从而根据三角函数的范围可求得最值.
【详解】(1)由得:,又
整理可得的直角坐标方程为:
又,
的直角坐标方程为:
(2)设上点的坐标为:
则上的点到直线的距离
当时,取最小值

【点睛】本题考查参数方程、极坐标方程与直角坐标方程的互化、求解椭圆上的点到直线距离的最值问题.求解本题中的最值问题通常采用参数方程来表示椭圆上的点,将问题转化为三角函数的最值求解问题.
3.(2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))已知曲线,直线:(为参数).
(I)写出曲线的参数方程,直线的普通方程;
(II)过曲线上任意一点作与夹角为的直线,交于点,的最大值与最小值.
【答案】(I);(II)最大值为,最小值为.
【详解】试题分析:(I)由椭圆的标准方程设,得椭圆的参数方程为,消去参数即得直线的普通方程为;(II)关键是处理好与角的关系.过点作与垂直的直线,垂足为,则在中,,故将的最大值与最小值问题转化为椭圆上的点,到定直线的最大值与最小值问题处理.
试题解析:(I)曲线C的参数方程为(为参数).直线的普通方程为.
(II)曲线C上任意一点到的距离为.则
.其中为锐角,且.
当时,取到最大值,最大值为.
当时,取到最小值,最小值为.
题型全归纳
【题型一】极坐标1:三线及三线段型
【讲题型】
例题1.在极坐标系下,曲线E的极坐标方程为:
(1)以极坐标系的极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系,求E直角坐标方程,并说明E的轨迹是什么图形;
(2)A,B,C为曲线E上不同的三点,O为极点,,证明:为定值.
【答案】(1),轨迹为椭圆(2)证明见解析
【分析】(1)根据极坐标方程直接转化为直角坐标系方程即可,随之可判断曲线的轨迹图形;
(2)根据极坐标方程结合极径的几何意义即可证明结论.
【详解】(1)解:,所以,则
所以,整理得:,轨迹为椭圆.
(2)解:设,

所以:
.
即为定值2.
例题2.在直角坐标系中,曲线的方程为,曲线的方程为以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档